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Executive Summary

Institutional investors, mainly in the pension fund sector, increasingly account for non-financial

criteria such as environmental, social and governmental (ESG) factors when it comes to portfolio

optimization. Yet, many investors are reluctant to incorporate responsible investment considerations

quantitatively in the sense of accounting for a set of criteria that figure as input in a portfolio

construction and management process on equal terms with risk and return. Instead, sheer screening

methods are prevalent in the industry, where some sort of exclusionary filtering takes place in the first

stage, followed by common portfolio management according to mean-variance criteria. In fact, there

is a shortage of adequate methods to consider ESG factors integrally. The present thesis rationalizes

quantitative integration of ESG measures in portfolio management and discusses existing approaches

in the literature, a majority of which is set in the area of Multiple Objective Optimization. It then

suggests a novel method based on the Black Litterman model. The suggested framework imposes a

structure on the covariance matrix to effectuate weight shifting according to single ESG scores of the

portfolio members. Moreover, it enables the investor to calibrate the degree of ESG incorporation

and allows for incorporating views on financial performance. The effects of the method on portfolio

weights are analyzed empirically. In an out of sample analysis, the weight shifted portfolios generated

by implementing the suggested method are shown to exceed the benchmark in terms of portfolio ESG

scores. One of the three variations of the suggested method is able to outperform the market in terms

of financial performance for the period in consideration.
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Chapter 1
Introduction

In this chapter the core motives for choosing the subject of quantitative integration of responsibility

into portfolio construction and management is discussed, a short literature review on current works

tackling the same subject is given and the structure of the thesis is outlined.

1.1 Motivation and Goal

Responsible Investment (RI) has overcome the stage of being a niche phenomenon in financial aca-

demia as well as in the industry during the last decade and it will most likely become more important

in the future (e.g. Renneboog et al. (2008b), Eurosif (2014), KPMG (2015)). The question of how to

address Environmental, Social, Governmental (ESG) criteria within the investment process is vital

and there is not a single right answer to it. Rather, there are several approaches considered by

institutional investors, investment banks or private asset managers to include ESG criteria along

the investment process. The present Master’s Thesis focuses on the strategy of integration, which

by both, the European sustainable investment forum (Eurosif) 1, as well as the United Nations

principles for responsible investment (UNPRI)2 is categorized as explicitly including ESG factors

systematically into traditional financial analysis and investment decisions (Eurosif (2014),UNPRI

(2016))(cp. table D.1 in Appendix D). Within the strategy of integration, the present thesis nar-

1 The Eurosif is a network of of financial service providers and investors promoting RI in the European market.
2 The UNPRI is - similar to the Eurosif - a global stakeholder network with the purpose of establishing principles

of responsible investments across the industry.

1



1.2. CONTRIBUTION AND LIMITATIONS 2

rows down the scope further on approaches that involve ESG measures quantitatively in portfolio

construction, selection and management. This is achieved by means of expanding a conventional

portfolio optimization process known from financial practice and literature considering at least one

additional ESG-linked criterion in some form. According to Eurosif (2014) the strategy of systematic

integration is underrepresented in European markets as compared to other strategies like exclusion

or screening. A recent survey on RI Funds in Europe (KPMG, 2015) states that besides the demand

growing for RI in general, investors increasingly request their asset managers for ESG-integration

to a higher degree. This might emerge out of the commitment of mainly institutional investors to

ESG-factor integration. In fact, institutional investors such as pension funds or insurance companies

align themselves increasingly with ESG integration, either by regulatory impulses or by in-house

investment policies (e.g. Wood et al. (2013), Renneboog et al. (2008a), Waddock (2008)). Yet, there

are still impediments and also misconceptions of what is the best investment practice in order to

serve the beneficiaries. Closely related to this matter, there is evidence of a predominance of Modern

Portfolio Theory (MPT) based approaches in an institutional investors context (Juravle and Lewis,

2008). This predominance combined with the lack of appropriate methods is deemed a substantial

barrier to include ESG factors in the core portfolio management process. Thus, there seems to be a

potential need for systematic integration of ESG considerations in an approach that combines MPT

principles with ESG factors as addressed with this Master’s Thesis. This reasoning is substantiated

by Von Wallis and Klein (2015) or Capelle-Blancard and Monjon (2012) who provide an overview

on RI-literature and remark that further research is necessary in the direction of conceptual work,

framing how to integrate RI-considerations into portfolio optimization. The present thesis aims at

illuminating existing approaches in current literature to quantitatively integrate ESG factors along

with volatility and return in a portfolio management process and proposes a novel approach based

on the Black Litterman portfolio optimization framework.

1.2 Contribution and Limitations

This Master’s Thesis contributes to the literature in scrutinizing different possibilities of the inclusion

of ESG criteria in a quantitative portfolio optimization context. Neither has such a review nor the

Risk, Return, Responsibility



1.3. LITERATURE REVIEW 3

proposed Black Litterman based method been offered so far, to the best of the author’s knowledge.

It is not the goal of the thesis to list and describe every single published method coping with ESG

oriented portfolio optimization, but to provide a representative selection to catch different starting

points to approach this problem. Also beyond the scope of the study would be the development of

a proprietary quantification of ESG factors; for this purpose, an external database is used.

1.3 Literature Review

ESG concerns in an investment context have been increasingly in the focus of academic literature since

the turn of the millennium and, even to a higher degree since the financial crisis in 2007. However,

RI research history reaches back even further. For a comprehensive and well documented literature

review of RI in general see e.g. Von Wallis and Klein (2015) or Capelle-Blancard and Monjon (2012)

on trends in RI literature as well as Viviers and Eccles (2012) for a retrospect on 35 years of RI

research. The vast majority of the papers address the question of the financial performance of RI

compared to conventional investments (see e.g.Capelle-Blancard and Monjon (2012)). In relation

to that, there are relatively few works that aim at the incorporation of ESG criteria into portfolio

optimization. However, there is a growing body of literature to do so. Utz et al. (2014) cover a

tri-criterion Mean-Variance (MV) Optimization approach based on a Von Neumann Morgenstern

(VNM) utility function setup. In their method, assets are assigned an ESG-score in addition to

expected return and volatility, such that efficient portfolios are to be found on a non-dominated

surface rather than the efficient frontier. Ballestero et al. (2012) split the asset universe into subsets

of ethical assets and assets not considered as ethical and apply a VNM setup to minimize deviations

from expected utilities according to investor dependent financial and ethical goals. In Hallerbach

et al. (2004) a two-stage approach is elaborated to meet investor preference based on a multitude of

asset attributes. A set of feasible portfolios fitting the investor’s constraints are calculated, then a

final portfolio is selected in an interactive multiple goal programming framework. Lundström and

Svensson (2014) apply a multi criteria decision making approach by extending the traditional MV

framework by an ESG criterion. They propose two methods: the weighted sum approach minimizing

the sum of weighted objective functions subject to a set of constraints, and the ε-constraint truncating

Risk, Return, Responsibility



1.4. STRUCTURE OF THE THESIS 4

the feasible set by imposing constraints to do so. Bilbao-Terol et al. (2012) apply a fuzzy logic

approach in combination with multiple goal programming to account for additional ESG goals. In

Drut et al. (2010) non-financial criteria are accounted for in an additional constraint to a common MV

framework. Jessen (2012) tackles the problem of ESG integration from a utility centered perspective.

In Dorfleitner and Utz (2012) and Dorfleitner et al. (2012) ESG is considered within a sustainable

return framework, adopting the concept of stochastic financial returns to the non-financial level.

Brandstetter and Lehner (2015) propose an adaption of the Black-Litterman portfolio optimization

model that incorporates a social and environmental impact score besides conventional inputs to

the model. However, the present thesis contributes to the literature independently, since the two

approaches differ in a substantial way. A more detailed review of existing literature is given in

Chapter 3.

1.4 Structure of the Thesis

In chapter 2, major concepts and definitions in the field of RI are discussed and the respective

market is described. Furthermore, a rationale for RI in general is elaborated. Chapter 3 discusses

the rationale of quantitative integration of ESG considerations in particular. It then describes and

compares a selection of approaches that include ESG measures quantitatively and systematically in

the portfolio construction process. In chapter 4 a novel method to integrate ESG factors in an equity

focused Black-Litterman portfolio optimization context is developed. Chapter 5 empirically tests

the proposed method and analyzes the performance of applying the method in comparison with a

benchmark. Chapter 6 concludes.

Risk, Return, Responsibility



Chapter 2
Responsible Investments

To set a basic frame for the thesis, the sections of this chapter discuss the field of RI by outlining

its elementary concepts and definitions, characterizing the corresponding market and investment

strategies. Also, the chapter sheds light on ESG-ratings and discusses the inclusion of such measures

in financial decision making. It concludes with a reasoning for investing in RI.

2.1 Basic Concepts

As RI is a relatively young phenomenon in academic literature as well as in a practitioners context,

there is a plurality of concepts and definitions and a lack of consensus. Sandberg et al. (2009) detect

heterogeneity on the levels of terminology, definitions, strategy and practice of RI across publications

through different cultures and discuss whether standardization is desirable or even feasible. Similarly,

as Eccles and Viviers (2011) put it, there is some sort of conceptual fuzziness since some terms

might be used synonymously and some might be polysemic. On the definitional level, terms are

often used interchangeably. Whether it is called ethical investment, socially responsible investment

(SRI), responsible investment or sustainable investment, there seems to be at least a basic common

denominator that most of the definitions are in line with. Elementary to these conceptions is the

integration of specific non-financial concerns (Sandberg et al., 2009) into the investment process.

These concerns are typically referred to as environmental, social and governmental (ESG). Depending

on the semantic context, the use of either of the definitions stresses a different property of RI.

5



2.1. BASIC CONCEPTS 6

For example sustainable investment emphasizes the long-term orientation, while socially responsible

investment might point at a desirable behavior in a socio-ethical context. Also, definitions and

respective connotations depend on their historical background. The term ethical in that specific

context might link to early uses of ethical investments fostered by churches as Quakers and Methodists

in U.S., U.K. and Australia (Sparkes and Cowton, 2004). An accurate definition is formulated by the

United Kingdom Social Investment Forum (UKSIF), stating that socially responsible investments are

investments that allow for the combination of both financial objectives and social values of investors

(Muñoz-Torres et al., 2004). In this thesis the term responsible investment (RI) is used for the sake

of neutrality and in order to avoid emphasizing only one of the ESG factors.

Describing RI terminology, one has also to be aware that catch-all terms like the above mentioned

are prone to being used for labeling investment products that follow all sorts of strategies. Notions

like ethical investment or socially responsible investment might evoke the impression of maintaining

moral integrity while investing in financial vehicles. However, the degree of what could be perceived

as moral integrity differs largely from strategy to strategy, from fund to fund and not least on how

moral integrity is defined. For one investor the exclusion of alcohol manufacturers from the asset

universe might be morally appropriate, for another one avoiding investments in companies linked to

child labor might be so. This divergence of perceptions is likely one of the reasons, why the lack

of standardization is still an issue across the industry. Similar to the subject of moral integrity,

Hellsten and Mallin (2006) raise the - in itself ethical - question whether being invested in ethical

funds is a way to participate in the capital markets without bearing responsibility for promoting

inequality between the rich and the poor. Moreover, it is scrutinized in the same paper whether in

some cases the idea of ethical investment is a marketing catch-phrase rather than a seriously meant

commitment. This illustrates that there are several dimensions when it comes to setting up a basic

framework of RI.

With the scope on responsibility, there is a distinction to be made between the concepts of RI

and Corporate Social Responsibility (CSR). The latter is generally attributed to the field of business

ethics. RI clearly focuses on investing responsibly, which may include considering CSR of investees.

As with the absence of standardization for the basic concept of RI, there is no consensus neither

in academia nor in the industry on the definition of ESG. There are, however, efforts among industry

Risk, Return, Responsibility



2.2. ESG STRATEGIES 7

participants towards a standardization of ESG criteria. For instance, there is an extensive catalog

published by the European Federation of Financial Analysts Societies (EFFAS) that specifies so

called key performance indicators being measurable quantities within an ESG framework (EFFAS,

2010). UNPRI (2016) emphasizes that a list of ESG items is not desirable due to the dynamic nature

of what ESG requirements to any participant are. The UN corporation for responsible investment

(UNPRI, 2016) defines that environmental issues are related to the quality of the natural environment

and natural systems in general, e.g. energy efficiency or climate change. Furthermore, social issues

are related to the rights, well-being and interests of people as well as communities, e.g. human rights

or workplace health and safety. Finally, governance issues relate to the governance of companies and

other investee entities, covering for example board structure, business ethics or bribery and corruption

issues. Despite a potential agreement on broad definitions like the named, there are obvious reasons

why it is difficult to find consensus on what ESG is about. ESG conceptions differ not only from

sector to sector, but are also highly dependent of the stakeholders perspective. Regulatory instances,

investors, companies or NGOs are likely to differ in their notion about what ESG should incorporate.

2.2 ESG Strategies

The question of how ESG concerns are integrated into the investment process is essentially a matter

of which strategy or which combination of strategies to choose. However, similarly and also related

to the fuzziness of definitions in section 2.1, there is also a certain vagueness when it comes to

categorization and definition of RI strategies. Some of the most influential networks, such as Eurosif,

PRI, GSIA3, EFAMA4 distinguish five to seven strategies (s. Table D.1 in Appendix D), that are to

some extend congruently defined among the organizations.

The most traditional way of aligning investments towards responsibility is exclusion or negative

screening. This strategy was already pursued by early RI retail funds in the U.S. and the U.K (Sparkes

and Cowton, 2004). It comprises the avoidance of titles or sectors that do not comply with ethical

or ESG criteria as defined by the investor. From an investor’s perspective, this may be motivated by

3 The Global Sustainable Investment Alliance (GSIA) is an investors based global network of sustainability oriented
members (GSIA, 2015)

4 The European Fund and Asset Management Association (EFAMA) represents the European investment manage-
ment industry (EFAMA, 2014).
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2.2. ESG STRATEGIES 8

risk management considerations, responsibility claims or also by religious guidelines (exclusion of so

called sin stocks), Law and Yau (2008)). There is also a distinction to be made between a voluntarily

chosen strategy of exclusion and one that is mandatory by law. An example for the latter are

several countries prohibiting investments in companies linked to cluster munitions or anti-personnel

landmines (Eurosif, 2014). Generally, exclusion criteria may be applied in case of human rights

violation, poor labor conditions, environmental carelessness, defense, animal testing, alcohol, tobacco,

gambling or pornography (Renneboog et al., 2008b) to name some prominent examples. In practice,

to rule out inappropriate investments, often thresholds are defined in terms of e.g. a percentage

maximum of the company’s returns generated by non-compliant business activities Sparkes (2003).

Once some kind of exclusionary filtering has been conducted, financial and quantitative selection

is applied (Renneboog et al., 2008b). Exclusions represent by far the most widespread strategy

according to the latest global GSIA (2015), European Eurosif (2014) and U.S.-based studies USSIF

(2015).

Another strategy similar to exclusion is often referred to as norms-based screening. Some-

times, this strategy is distinguished from exclusion only sub-categorical as in De Graaf and Slager

(2006). The notion is to apply a set of standards that is typically predefined by an international or-

ganization like the Organization for Economic Co-operation and Develpment (OECD) or the United

Nations Global Impact (UNGI). Also, the orientation to guidelines set by industry initiatives and

codes may be considered as norms-based screening (Scholtens, 2014). Based on these screening

guidelines investors normally react upon non-compliance with their standards in first conducting

deeper analysis, second either exclude the respective investment from the portfolio or engage with

the according company (Eurosif, 2014).

As opposed to exclusion or norms-based screening being negative filters, there is also a positive

screening strategy, sometimes called best-in-class strategy. By following positive screening, not

the weak ESG performers are penalized or excluded, but the stronger ones are rewarded or included.

Consequently, this also may evoke an incentive for companies to increase ESG efforts. In practice

typically only some defined top percentile with respect to ESG criteria within a sector is considered

in the portfolio selection. As defined by Eurosif (2014), not only the investable universe may be

narrowed down this way, but also the relative allocation within portfolio construction may depend
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on ESG-factors besides financial input criteria. Best-in-class approaches can be mainly criticized in

two ways: (i) it is questionable to what extent a conscious investor’s needs are met when the best

few ESG scoring companies out of a sector with on average poor ESG performance are included,

(ii) RI-fund holdings and non-RI-fund holdings are found to be markedly similar, which is mainly

due to the barely exclusive investment style facilitated through best-in-class methods (Schröder and

Nitsche (2015), Midttun and Joly (2010)).

A further strategy is categorized as sustainability themed or ESG themed investments.

Typically, single issues in the field of RI like climate change, cleantech or energy efficiency are ad-

dressed through the selection of according investments (Eurosif, 2014). There are funds following

this strategy that focus on single or multiple ESG subjects (clusters) thematically (Scholtens, 2014).

UNPRI (2012) detects different motives to implement this strategy; to effectuate an environmental

and social impact, to achieve enhanced risk-return profiles as well as to improve the degree of diver-

sification and to participate in growth. The same publication mentiones that sustainability themed

investments are underrepresented in an average portfolio as there exist several barriers. Among

others, the lack of historical track record data and high levels of perceived risk are mentioned, since

these investment areas are often considered as immature.

ESG integration as defined in Eurosif (2014) and UNPRI (2016a) is the explicit incorporation

of ESG risks and opportunities in traditional financial analysis. Generally, integration encompasses

the use of qualitative as well as quantitative ESG information in the investment process and aims

at enhanced investment decision making (UNPRI, 2016a). The methods covered in Chapter 3 as

well as the proposed framework in Chapter 4 can be attributed to this strategy.Eurosif (2014) splits

integration into two categories: (i) non systematic ESG integration being described as ESG analysis

and research made available to analysts and fund managers; (ii) systematic ESG integration embraces

systematic consideration and inclusion of ESG research or analysis of financial ESG factors. Also,

financial ratings or valuations that are derived from ESG analysis and that lead to mandatory

investment constraints (e.g. weighting schemes or exclusions) are considered as ESG integration.

Still, this narrower definition is matched by most of the methods in scope. Integration may be used

on either the portfolio level, the stock, issuer or investee level (UNPRI, 2016a). The integration

strategy is applied increasingly by institutional investors who commit to RI but at the same time
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try to avoid to be exposed to the potential restrictions to the investable universe caused by several

screening methods (Staub-Bisang, 2015). Yet, integration as defined above still embraces a wide

spectrum of implementations. According to Fung et al. (2010) the practices reach from a combination

of other strategies matching the technique to the type of portfolio, asset class or mandate, to the

inclusion of ESG metrics as additional input data to quantitative financial models. The difference to

other strategies may seem marginal, as for example best-in-class approaches may as well incorporate

ESG factors systematically. The emphasis lies, however, on the integration in traditional financial

analysis, i.e. the consideration of ESG criteria besides risk and return in the analysis of securities

or companies (Friesenbichler, 2016). Herein also lies one of the potential barriers for asset managers

to implement integration: risk and return are objectively measurable criteria, whereas ESG scores

are challenged in terms of comparability and transparency (Nielsen and Noergaard, 2011). In spite

of such barriers, numerous recent publications (e.g. Eurosif (2014), USSIF (2015), KPMG (2015))

consider integration as the fastest growing strategy.

Experiencing strong growth as well, the strategy of engagement and voting is part of the core

strategies as defined in a practitioners environment. The notion here is that by means of shareholder

stewardship, asset owners or institutional investors as their agents exercise their voting rights or en-

gage in dialogue with companies under the premise of RI. Investors intend to influence their investees

either directly or grouped in investment associations (Gifford, 2012). There are different sources of

shareholder power; besides formal shareholder rights, there may also be legal proceedings to enforce

shareholder rights, lobbying, investment or divestment as incentivizing or disciplinig measures or

placing public or private statements to affect a companies or a representative’s reputation (Gifford,

2012). Given that institutional investors potentially partake in numerous companies, voting prepar-

ation may be costly, hence guidelines given by proxy advisors play a role. Also, investor networks

as the UNPRI or EFAMA encourage their members in stating principles or guidelines, according to

which ownership responsibilities shall be exercised and also documented for the public (e.g. EFAMA

(2011)).

A strategy similar to sustainability themed investing is known as impact investing or community

investing. Generally, the social or environmental component is emphasized in this strategy, yet

financial return is not neglected. Rather it is a combination of philanthropic goals or at least some
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focus on non-financial impacts and traditional return on investment considerations (Höchstädter and

Scheck, 2015). Eurosif (2014) classifies the strategy into two broad categories; (i) social integration

that aims at e.g. affordable housing, health, finance or similar fields and (ii) investment in mostly

developing markets in e.g. renewable energy or sustainable agriculture. The difference between

impact investing and sustainability themed investing originates mainly from the investors’ motives.

UNPRI (2012) distinguishes impact first investors from financial first investors. Impact investing

covers a wide range of expected financial return; the goals may reach from capital preservation to a

market rate of return (Wilson, 2014).

Besides the issue of ESG strategy definitions, there also remains the question what the frequently

mentioned investment process could actually look like and which strategies may be addressed at the

different steps of such a process. In Louche (2004) an insightful investment process in an algorithmic

form is given. It refers to the process of an actual investment fund applying different strategies in

a multiple phase model. Since an investment process is usually a matter of the fund management

board defining it, there is however no universally valid design of such a process. Figure 2.1 depicts

a generic investment process and assigns core ESG strategies to the different steps.
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Investment Process and ESG Strategies
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Figure 2.1 – Investment Process and ESG Strategies

This figure shows a generic investment process in an institutional investor context. The arrows imply a chronological

order, i.e. the process may also be recursive after evaluation. The three-letter-boxes indicate in what stage the strategies

are likely to be addressed (shaded) or not (transparent). The key to the letters is EXC for exclusion, NOR for norms-

based-screening, BES for best-in-class, SUS for sustainability themed, INT for integration, ENG for engagement and

IMP for impact investing. (Source: own figure partially based on De Graaf and Slager (2006) and MSCI (2011))
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2.3 Market for Responsible Investments

The market for RI has become the fastest growing financial market segment in recent years (e.g.

Fung et al. (2010)). Yet, an estimate of the total global market volume and its progression over

time is challenging, since mainly above mentioned networks as the UNPRI, Eurosif or the GSIA

only report in reference to their signatories. A professional investment manager may be member of

different networks which vitiates the sheer addition of reported numbers over all networks. However,

global network reports may reflect the market development quite well. In a global RI market study

conducted by the GSIA5 Around 30% of total managed assets are reported to be RI assets by

2014.6 This corresponds to aggregated 21.3 trillion US dollars of assets under management (AUM)

invested in RI, adjusted for double counting of strategies. Geographically, global RI assets are mostly

European (63%) or from the USA (30%), the residual is attributed in descending order to Canada,

Australia/New Zealand and Asia. The same publication identifies significant growth rates from

2012 to 2014 for the whole global market (61%), which origins mostly in the US market (76%) and

least in the Asian market (0.8%). Strategy-wise the majority of assets is attributed to exclusion,

followed by integration, engagement, norms-based screening, best-in-class, sustainability-themed and

impact investing (see also Section 2.2).7 Strategy growth rates are highest for sustainability themed

investing (136%) followed by ESG integration (117%), the only negative growth rate is recorded for

positive screening / best-in-class (-1%). The reported growth rates in GSIA (2015) are partially

caused by changes in definitions. In terms of asset classes around half of the global volume is covered

by equities, followed by bonds (40%) and real estate (5%); the remaining shares go to commodities,

venture capital, hedge funds and others. The demand side globally can be segmented in roughly 90%

institutional and 10% private investors; this proportion seems to remain stable during the last years

(GSIA, 2015).

A similar market characterization is given according to UNPRI reports. Here, by April 2016 a

total of 62 trillion USD assets under management is reported UNPRI (2016b). This corresponds to

5 The GSIA is an association of five large RI networks; the European Sustainable Investment Forum (Eurosif), the
Responsible Investment Association Australasia (RIAA), theUK Sustainable Investment & Finance Association
(UKSIF) and the US Forum for Sustainable and Responsible Investment (USSIF).

6 The figures in this paragraph correspond to the ones reported in GSIA (2015).
7 Yet this ranking depends largely on the defined categorization. With for example integration defined in a narrower

way as done in Eurosif (2014), it would not rank as second most applied strategy.
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a tenfold increase since the first reporting in 2006 (see. Figure 2.2). By 2015 the dominant region

in terms of UNPRI participation is Europe (53%), followed by North-America (26%) and Oceania

(11%), the remaining global regions account for less than 5% each.
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Time Series: UNPRI Assets Under Management

Figure 2.2 – Assets Under Management UNPRI

This plot shows a time series of yearly data of global assets under management as reported by the UNPRI network,

measured by April of the corresponding year. The latest value stems from April 2016 and amounts to 62 trillion USD

assets under management; these were managed by 1500 signatories. (Source: UNPRI (2016b))

Bearing most volume in a global comparison, the European RI market in aggregate is still growing

at a faster rate than the broad asset management market (Eurosif, 2014). In terms of the most

important asset classes and their representation in the RI market, the European proportions with

around 50% equities and 40% bonds match the worldwide distribution (Eurosif, 2014; GSIA, 2015).

Concerning the frequency of strategies, the predominance of exclusion approaches is also observed

in Europe, followed by ESG integration8 and norms-based-screening.

Clearly, across all networks the reported growth rates of the market are remarkably high. This

raises the question about the source of the significant market expansion after RI has lived in the

shadow for decades. An obvious condition for the market to grow is the awareness within the in-

vestment community and governments of issues like climate change, energy efficiency or scarcity of

natural resources. The recognition of the financial materiality of these issues undoubtedly catalyzes

market growth as well (Sikken (2011), Renneboog et al. (2008b)). The raise of demand can be

observed for both, large investors as well as retail funds. For the group of large investors such as

8 Here, ESG integration refers to the broad definition which also includes non-systematic ESG integration as the
simple access for analysts to ESG reasearch.
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pension funds the typical motives to engage in RI embrace the improvement of risk-adjusted returns,

signaling social responsibility and contribution to safeguard the integrity of financial markets (Sikken,

2011). It is also plausible that large investors act inline with the universal owner hypothesis (Hawley

and Williams, 2000). The latter states that an investor who owns considerable holdings in companies

and is sufficiently diversified, owns a substantial share of the whole market as opposed to a few single

companies. Thus, this investor is potentially exposed to the course of the whole economy and has

therefore an immanent incentive to reduce negative externalities like pollution or energy inefficiency

caused by single sectors or companies affecting the whole economy. Furthermore, the rise and expan-

sion of networks like the UNPRI or Eurosif foster the involvement of mainly institutional investors

in RI (Sikken (2011), Eurosif (2014)). An important role is also attributed to regulation in single

countries with respect to transparent reporting standards regarding ESG disclosure by pension funds

and listed companies (e.g. Freshfields Bruckhaus Deringer (2005)). Yet, the regulatory or legislative

spectrum of influence is not limited to reporting standards. For example, Swedish Pension funds are

obliged to incorporate ethical and environmental issues in their investment policies since 2002 and

the Netherlands grant tax deduction for green investments (Renneboog et al., 2008b). According

to Eurosif (2014), also external pressure (Non-Governmental Organisations (NGOs), media, trade

unions) and demand from retail investors is mentioned as important drivers of RI demand. The retail

sector is considered as least important factor, although in principle, there reportedly is a potential

demand from private investors (Eurosif, 2014). The reluctant participation of private investors in

the RI market could be partially founded in the intermediary function of financial advisors that play

an important, yet little investigated role in the financial industry. Paetzold et al. (2015) illuminate

the conceptions and motives from both, the investor’s as well as the advisor’s perspectives and hint

at potential starting-points to overcome existing barriers. According to Eurosif (2014) NGOs may

influence market participants on various levels taking on different roles. Be it as provider of advocacy

toward institutional investors and large pension funds, as consultants for RI funds, or even as com-

pany shareholders or as sponsors of funds (Guay et al., 2004). Furthermore, market growth of the

RI sector was accelerated by the financial crisis in 2008 (Sikken (2011), Woods and Urwin (2012));

conceptually, the awareness of the financial materiality of ESG factors seems to have gained ground

during the aftermath of the crisis. One reason for this indication of rethinking basic investment prin-
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ciples may be found in empirical evidence of RI funds exhibiting a dampened downside risk during

crises (Nofsinger and Varma, 2014).

The near future of the RI market will be determined most likely by self-imposed corporate

policies as well as external impulses from forthcoming governmental regulation changes. The latter

are predominantly to be expected in the area of corporate ESG disclosure. The growth of visibility of

RI concepts for a wider range of investors, the growing interest in RI and the raise of ESG disclosure

standards in so far underrepresented regions as the Asian market are also considered as potentially

driving forces behind further global RI market growth GSIA (2015).

2.4 ESG Ratings

Credit ratings in bond markets represent organizational efficiency of the market when facing costly

and complex screening activities to overcome information asymmetry problems in debt financing.

A similar setup in the context of RI led to the establishment of ESG scores or ESG ratings in

recent years. The heterogeneity of definitions for elementary RI or ESG concepts described above is

mirrored in the plurality of the ratting suppliers’ methodologies (Sadowski et al., 2010; Windolph,

2013). ESG ratings differ in various ways: Keller (2015) names differences in the structure of

the issuer (e.g. NGOs, index providers), source and properties of input data, weightings of ESG

components, the type of rating output, rating methodology, geographic focus and intended use.

Unlike credit ratings that feature to a certain degree traceable and prevalent factors focused on the

debtor’s probability of default, ESG ratings exhibit a broader margin of discretion. This wide range

of interpretations and methodologies raises the issue of transparency, reliability and credibility of

ESG ratings (Windolph, 2013). However, the existence of reliable instruments for the assessment

of a company with respect to ESG considerations is pivotal for both, investors and companies. For

investors, to screen firms in their portfolio or potential entries regarding the compatibility with their

investment policies. For companies as an opportunity to signal ESG compliance or activities in order

to attract capital more easily by passing investor screenings and being included in corresponding

indices (Delmas et al., 2013). The credit rating process is claimed to be prone to biases towards

rating inflation due to an issuer-pay based practice, where the assessed company pays the rating
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provider (Partnoy, 2009; Xia and Strobl, 2012). Yet, the prevailing business model for the ESG

rating practice is reported to be prevalently subscriber-pay based, where investors and consumers

fund the ratings. Still, a conflict of interest cannot be ruled out in this market neither, since often

the providers of ratings also consult the companies being evaluated (Sadowski et al., 2011). Another

issue besides information asymmetries is addressed by the question of how well ESG ratings actually

measure the ESG condition of a company. Chatterji et al. (2009) report some discouraging results

according to which data is not evaluated optimally by certain suppliers. However, the study finds the

analyzed ratings to statistically significantly predict post rating occurrence of negative governmental

and environmental externalities. Wood (2010) reviews literature on the measurement of corporate

social perfomance (CSP) and related concepts and emphasizes that CSP measurement is a function

of available data, thus depending on corporate transparency in this matter. Furthermore, it is often

criticized that ESG ratings or scores are to a large extent of a subjective nature. This argument

is partially challenged by Keller (2015) who analyzes ESG rating procedures of single suppliers and

finds the integration of quantitative data and the application of specific methods of measurement to

be instruments that allow for a certain degree of objectivity.

Given that ESG scores or similar concepts are applied as integral parts of a quantitative portfolio

optimization process as it is suggested in this thesis, there are several issues that require diligent

inspection. As such measures represent highly condensed information being in most cases the result of

some sort of data collection, weighting scheme and computational processes, it is crucial to know the

ingredients.9 Escrig-Olmedo et al. (2014) identify a number of issues associated with the construction

of sustainability indices: the choice of domains and variables, the incorporation of multi-year data,

the construction of a scoring system, the selection of statistical aggregation and weighting methods.

To what degree a company’s ESG performance is represented by a score is thus highly contingent on

the chosen parameters, methods and applied models.

Another concern when including ESG scores in investment decisions is about the causal rela-

tion between ESG measures and financial performance. When conducting empirical analysis of a

hypothesized correlation between the two variables, controlling for confounding variables might be

insightful. In a study published by Artiach et al. (2010), significant positive correlations between

9 For a description of the ESG scores used in this Master’s Thesis s. Section 5.1.
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corporate social performance (csp), firm size and growth capacity were found. The authors reason

that the social impact of large companies is likely to be too substantial for the firms to pursue a pass-

ive policy in terms of ESG concerns. Additionally, economies of scale in implementing sustainable

principles as well as regulatory pressure may explain the results. Also, companies characterized by

high growth benefit from the opportunity to include ESG consideration right from the beginning into

their expanding businesses. Relating these findings to the inclusion of ESG scores into investment

decisions, it is (i) important to be aware that doing so may to a certain extent be equivalent to

incorporating other factors that are correlated with ESG measures; (ii) firm size might be one of the

most prominent confounding variables that potentially affect financial performance (e.g. Van Beur-

den and Gössling (2008); Artiach et al. (2010)). Furthermore, as found by Galema et al. (2008)

there is also statistical evidence of high ESG-values correlating with lower book-to-market ratios.10

For an interpretation of these findings in a Fama-French model context and potential implications

to an high ESG-score portfolio see Section 2.5. As further potentially confounding variables that

link corporate social performance to corporate financial performance, Van Beurden and Gössling

(2008) identify industry, R&D expenditures and risk11 in a literature review study. Quite plausibly,

the significance of an industry variable reflects that industries differ in coping with sustainability in

terms of standards, regulation or best practices. Again, from a portfolio optimization point of view,

this could result in an overrepresentation of certain industries, which potentially affects the degree

of diversification. In terms of risk, high CSR level firms exhibit lower risk, which is compatible with

the findings from above with respect to firm size and book-to-market ratio. According to the studies

reviewed in Van Beurden and Gössling (2008) Research & Development (R&D) expenditures and

CSP / CFP (Corpoarte Financial Performace) are interrelated as well. However, R&D factors again

are related to industry affiliation as for example pointed out in Waddock and Graves (1997). Besides

ESG scores being correlated to other financially relevant factors, also confounding qualities of the

single components of ESG are subject of research (e.g. Manescu (2011)).

Furthermore, concerning single components of ESG ratings, the question of weighting is essential

10 This contradicts to some extent the findings of Artiach et al. (2010), who postulate a positive correlation between
CSP and growth companies. In financial literature, low book-to-market ratios are associated with value stocks, as
opposed to growth stocks (Fama and French, 1996).

11 In most studies risk is defined as standard deviation of the stock or similar variance-based measures.
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and may result in biases depending on which of the components is emphasized Windolph (2013).

Often, index providers or rating agencies tend to emphasize economic criteria rather than social or

environmental ones Fowler and Hope (2007). Bias issues do also appear in the selection of rated

companies. As mentioned in Windolph (2013) rating providers often focus on large companies and

exclude medium or small firms along with companies from emerging countries.

Moreover, condensing ESG properties of a company into a single value may be a source of

potentially large trade offs in a RI context. Escrig-Olmedo et al. (2014) and Windolph (2013) point

out that a sole measure might be prone to a certain offsetting effect, inasmuch as single ESG aspects

of a company may be compensated reciprocally. That is, a single ESG measure is most probably not

capable to meet the preference set of a RI oriented investor in detail. That said, variance, covariance

or Beta (see Section 4) as a risk measurement as well cannot be able to catch all dimensions of risk

in an investment context, particularly not if based on historical price movements (e.g. Engle (2004)).

However, in the present thesis it is hypothesized that both measures may result in a comprehensive

representation of investment relevant criteria to conscious investors, when considered in combination.

.

2.5 Rationale for Responsible Investments

Doing well while doing good ; this formulaic phrase frequently cited in many RI-related publications

may be appropriate when it comes to condense the main motive behind investing responsibly, but

there are certainly more layers to rationalize RI. From religiously motivated investors through in-

stitutional ones being obliged by regulatory constraints, to the fund manager aiming to attract new

assets under management, the whole spectrum of motivations is represented. Hereinafter the scope

is on rationalizing RI mainly from an investor’s point of view. Financially, the rationale for RI is

clearly connected to the performance of responsible investments in terms of risk adjusted returns

and potential correlations of a non financial with financial performance. From an economic point of

view, the question of how RI may be reflected in a financial-/ non-financial utility and preference

context might be of particular interest.

As pointed out in Section 1.3, there is an extensive body of literature addressing the relation
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between Non-Financial Performance (NFP) or ESG performance with financial performance, or

likewise corporate social performance with overall business performance. Yet, the sheer number of

studies indicates a lack of consensus on that matter, such that it is reasonable to state that research is

inconclusive in this regard. However, if generally considering ESG factors in the investment process

is hypothesized to matter for financial performance, some of the neo-classical assumptions have to be

relaxed, i.e. the focus is not only on systematic risk, markets are not considered to be fully efficient,

information may be incomplete and risk may not be fully diversified (Dumas et al., 2015).

The interrelation between financial and non-financial performance may basically be divided in

three scenarios from a financial theory perspective as pointed out by Manescu (2011): (i) In the no

effect scenario there is no observable difference adjusted for common risk factors between returns

generated by high ESG firms as opposed to low ESG score companies. That is, the information

about ESG properties of a specific firm is already priced in and systematic excess returns above

market average on the basis of this information are not possible. This scenario would be in line

with the Efficient Market Hypothesis (EMH) (e.g. Fama (1998)). (ii) In the mispricing scenario

ESG attributes of a firm are indeed value relevant, but the information is not sufficiently reflected

in asset prices. This results in either higher or lower risk adjusted returns depending on the relation

of costs and benefits attributed to the ESG efforts. Incomplete information effectuates over- or

undervaluation contingent on the market’s perception of the mentioned cost/benefit relation. (iii)

The risk factor scenario hypothesizes low ESG score returns to be systematically higher in terms

of a risk premium compensating for bearing non-sustainability risk. The risk factor scenario is also

supported by the findings from Artiach et al. (2010), Van Beurden and Gössling (2008) as well as

Galema et al. (2008) referred to in Section 2.4 about the effect of size and book-to-makret ratios of a

company to risk and return. According to these findings, on average, companies scoring high on an

ESG scale tend to be big companies with low book to market values. Assuming this holds true, from

a Fama-French perspective, this is equivalent to state that a portfolio being tilt to high ESG scores

as compared to one with low ESG scores is on average less exposed to the risk factors inherent to

small companies and growth companies, i.e. exhibits lower expected returns.12 Section 3.1 discusses

the relation between risk and ESG criteria more thoroughly.

12 For a short recapitulation of the Fama-French three factor model see section Appendix A.1.
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A recent second order meta study about the relation between ESG scores and corporate financial

performance (CFP) is given in Friede et al. (2015). The study evaluates the findings of roughly

2200 studies on the individual stock as well as on the portfolio level and claims about 90% of all

studies to find a non-negative relation, of which 48% (vote-count studies) or 63% (econometric meta

analysis) yield positive findings in terms of ESG-CFP correlation.13 In the study, the importance of

distinguishing between portfolio and non-portfolio studies is emphasized. Referring to this, portfolio

studies exhibit significantly less positive results than non-portfolio studies. This result is also found

by other studies, as e.g. Fulton et al. (2012). Friede et al. (2015) hypothesize this finding to be

potentially one of the main reasons why institutional and private investors typically perceive at best

a neutral ESG-CFP relation. Also, the weak effect in a portfolio context might be partially explained

by MPT, since idiosyncratic risk as ESG risk is assumed to be diminished if the number of titles in

the portfolio is sufficiently large by the principle of diversification. Furthermore overlapping market

and non-market factors, the distortion of any remaining effects by exclusionary screen portfolios

as well as the consideration of management fees or other costs may cause the observation of the

weak ESG-CFP correlation of portfolio related studies (Friede et al., 2015). Similar to Friede et al.

(2015) there are various other meta studies finding a positive link between ESG/CSP and financial

performance (e.g. Orlitzky et al. (2003);Wood (2010);Margolis et al. (2007); Margolis et al. (2009);

Clark et al. (2015), Allouche and Laroche (2005); Fulton et al. (2012)). Yet, there are also studies

finding no statistically significant difference (Hamilton et al., 1993) or even negative relations, as in

Renneboog et al. (2008a).

There are several issues to consider when reasoning about the relation between CSP and CFP.

For instance, the causation pathway of CSP and CFP is not clear at all (Wood, 2010). There may

also be confounding variables in the background that influence the superficially concluded correlation

substantially. Also, the predominantly reported positive relation may be biased due to a truncated

pool of published studies and as a consequence be overestimated (Rost and Ehrmann, 2015). Besides

that, data as reported by companies on CSP may be prone to deception or manipulation (Woods

and Urwin, 2012). Whether research claims ESG to have a positive, negative or no financial impact

13 Vote-count studies evaluate studies counting positive, negative and neutral findings and vote the most prevalent
category as winner. Meta studies are econometrically conducted analysis of existing studies.
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depends largely on the data and methods used. However, the issue whether RI is legitimated from a

financial performance point of view may have been overemphasized in the literature of the last years.

Capelle-Blancard and Monjon (2012) see the reason for this tilt towards financial performance in

the data-driven nature of research. They confirm the importance of monetary motives to include

in RI decision making but also mention altruism, reputation or self-esteem to be important motives

for people to be responsible investors. In fact, there is evidence that the latter are willing to forego

financial return to a certain degree for the benefit of achieving their non-financial goals; Benson and

Humphrey (2008) as well as Renneboog et al. (2011) find RI fund flows to be less sensitive to past

returns as compared to conventional funds. This has its origins in non-financial returns for specific

investors and shareholder stewardship, but also in minimizing risk.

When rationalizing RI, financial return is doubtlessly important, yet no less are market beliefs,

being a major determinant of money flows. In a study focusing on the Swedish market, investment

motives for institutional and private responsible investors were explored. It was found that particu-

larly institutional investors believe that investments in RI assets are rewarded with higher returns in

the long run and reduced risk, i.e. exhibit better risk-adjusted return than conventional investments

(Jansson and Biel, 2011). With a focus on institutional investors, Freshfields Bruckhaus Deringer

(2005) attach belief based conditions to engage in ESG investing. Thereafter ESG considerations

must be taken into account if such considerations are reasonably believed to be consensual amongst

beneficiaries, or to have a material impact on the financial performance of that investment. Moreover,

if ESG consideration provides a point of differentiation within a set of equally attractive alternatives,

the consideration may be taken into account.

Hence, to base the justification of RI solely on potentially advantageous risk-return characteristics

would fall too short. Ipso facto, non-financial incentives in the form of personal motives or institu-

tional sustainability goals towards the contribution to the environmental, social and governmental

prosperity of the economy are essential. RI may provide appropriate measures to promote change

in a shareholder based economy, for example in financing the transition to renewable energy (Kerste

et al., 2011). It is also plausible to think of ESG investing having a disciplining effect on companies,

which particularly might hold true if investors in terms of the above mentioned universal owner the-

ory gain influence and engage directly with their investees. Furthermore, ESG considerations may
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enhance security selection as well as risk management processes CFA (2008). ESG performance can

also be seen as a proxy for management quality, representing a company’s ability to respond to long

term trends Bassen and Kovacs (2008).

On a conceptual economic theory level, RI may be rationalized through social preferences, which

for example are defined in Fehr and Fischbacher (2002) as caring not only about material resources

allocated to oneself, but also to relevant reference agents. Starr (2008) connects pro-social behavior

found in social preference experiments to be reflected in RI. In particular, fairness related sanctioning

is referred to, inasmuch as companies are screened in or out of a portfolio, depending on whether they

treat their shareholders in a fair way. In terms of utility theory RI may also be legitimated against the

background of the Prospect Theory, as stated by Kahneman and Tversky (1979). The specific value

function of this seminal behavioral finance paradigm reflects empirically substantiated loss aversion.

Assuming a mitigated downside risk related to RI assets, ESG consideration in investment decisions

may provide value for investors that may be described by the Prospect Theory value function.
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Chapter 3
Quantitative Integration of ESG measures into

Portfolio Construction

The following sections are about systematic integration of ESG criteria in the investment process as

described above and in Eurosif (2014) and also USSIF (2015). The scope is even further narrowed

down in two ways: the first requirement to qualify as a relevant method in the sense of the present

thesis is the quantitative integration into portfolio construction and portfolio management in partic-

ular. Second, as opposed to the widely spread and often mentioned two-step-approach, where in the

first stage some exclusionary filter is applied to then financially optimize the portfolio traditionally

in the second stage, the ESG inclusion is required to be done simultaneously, or integrally. Ap-

proaches that meet these requirements are named Integral Quantitative Integration of ESG-criteria

(IQIE) and represent quantitative integration of ESG criteria in the narrowest, purest sense. Yet, the

simultaneity requirement may be temporarily relaxed, such that approaches featuring a sequential

implementation are taken into account as well for the sake of comprehensiveness. However, there

is by no means any claim to completeness in the review of approaches. A rationalization of IQIE

approaches that goes beyond the general reasoning for RI (Section 2.5) as well as possible impedi-

ments are given in this chapter. It then provides basic theoretical frameworks being a preliminary

part to discuss a selection of existing IQIE approaches in the narrow and the as well as the wider

sense. The description of the different approaches aims at reviewing the methods beyond the mere
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restatement of the according abstracts. Therefore it contains methodological details that contribute

to the understanding of the applied principles.

3.1 Rationale and Impediments for Quantitative Integration

As insinuated in the above sections, standard MV text book portfolio optimization methods concen-

trating solely on the maximization of future financial returns may fall short generally (Steuer et al.,

2007), and if one allows for investors aiming to act responsibly more specifically (Hallerbach et al.,

2004). As underlined in Renneboog et al. (2008b) or Bollen (2007) the existence of multi-attribute

ultility function investors, that consume the social responsibility attribute of an investment is bey-

ond controversy. Some investors seem to prefer a mixture of RI and conventional funds, and the

optimal mixture could be determined by multi-attribute portfolio maximization (Hallerbach et al.,

2004; Lewis and Mackenzie, 2000; Von Wallis and Klein, 2015). Indeed, pension funds as the most

represented group of investors in an RI context (see Section 2.3) already account for ESG factors.

Notwithstanding most of them typically apply a specific form of exclusionary screening in the first

place, to then allocate the fund’s wealth to the selected assets in a financial optimization in the

second phase (Hirschberger et al., 2012; Nielsen and Noergaard, 2011). This procedure is not con-

sidered IQIE method, since negative screening is merely the - more or less - sophisticated exclusion of

assets according to predefined filtering. Thus, despite the fact that systematic integration is gaining

grounds for the last years, there still seem to be impediments as to integrating ESG measures quant-

itatively. The main reason for the predominance of the MV paradigm and the minor importance

of ESG consideration in an institutional investors context is based on the historical concentration

of the finance industry on Modern Portfolio Theory (MPT) and variations thereof (Brandstetter

and Lehner, 2015; Richardson, 2011; Wood et al., 2012, 2013). Also, Juravle and Lewis (2008) find

the notion of fiduciary duty to be one of the main contra-arguments for institutional investors. Ac-

cording to common law jurisdictions14 the duty to act in the best interest of the beneficiaries is

fulfilled by pursuing the modern portfolio approach in investment decision making, thus to maintain

an optimally diversified portfolio (Freshfields Bruckhaus Deringer, 2005; Juravle and Lewis, 2008).

14 For UK, US and similarly for Germany and France.
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If MPT is applied in its strictest form, then any restriction to the asset universe produces inferior

portfolios from a MV point of view. It seems to be a potential source of uncertainty for institu-

tional investors that depends on whether ESG consideration constitutes or is perceived a breach of

fiduciary duty. Yet, as reported in Freshfields Bruckhaus Deringer (2005), there is no jurisdiction to

prescribe how to integrate ESG considerations into investment decision making. Richardson (2011)

finds legal and practical issues, such as how the beneficiaries’ best interest should be defined, when

there is no unanimity on investment principles among them. Sikken (2011) identifies restrictions

in conventional valuation models as one of the key barriers for ESG investments, and non-financial

indicators may not be accounted for as a result of prevailing mindsets of investors. Related to this,

according to Brandstetter and Lehner (2015), the commitment of pension funds to class specific

benchmarks for expected financial risk and return can be seen as an impediment for the inclusion

of ESG criteria, besides the adherence to conservative legal and policy-related requirements. Also,

ESG inclusion causes additional cost, especially if ESG research is done in-house, which adds an

expenditure-revenue dimension to the problem. In a series of interviews with professionals, Nielsen

and Noergaard (2011) identify also the lack of material proof that RI funds outperform conventional

ones, time constraints, asset managers’ limited expertise in ESG matters and the lack of standardized

data as barriers to the more sophisticated integration of ESG into portfolio management.

To overcome most of the mentioned key barriers, there is a need for more conceptual and theor-

etical work on the quantification of ESG and the inclusion of such a measure into portfolio selection

(Capelle-Blancard and Monjon, 2012; Nielsen and Noergaard, 2011; Von Wallis and Klein, 2015). The

rationalization of IQIE approaches is essentially founded in the notion of covering risk dimensions

other than short term market risk. ESG covers risks that potentially influence the earning power,

reputation and the balance sheet profoundly (Aeby, 2014). Well known recent examples for incidents

related to poor ESG properties harming involved companies are BP, Tokyo Electric Power Company,

Foxconn, Siemens, Lonmin or Barclays (Aeby, 2014; UNPRI, 2016b). Kiernan (2007) suggests that

recent company implosions have revealed the weak spots of conventional financial assessment of in-

vestees and propelled the urgency of considering alternative measures related to ESG issues. There

is evidence that indeed ESG metrics capture risk that is not assessed by traditional fundamental

risk forecasts. UNPRI (2016a) concludes that poor ESG ratings can help reveal companies with
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high future volatility. Hoepner (2013) links a portfolio of high ESG score titles empirically to lower

overall downside risk or dampened worst case outcomes respectively. Quigley (2009) reports the

bottom quintile of ESG companies to exhibit a forecasted risk typically considerably higher than for

top quintile stocks. In a semi-deviation based analysis Dumas et al. (2015) find evidence for ESG

metrics to have a limiting effect to downside volatility. Related to such findings of RI and mitigated

risk is the evidence of high ESG scores being correlated with lower cost of debt (Attig et al., 2013;

Bauer and Hann, 2010; Cheng et al., 2014). It is also emphasized in Freshfields Bruckhaus Deringer

(2005), that the long term risk and performance dimension may be incorporated by taking ESG

into account with respect to embracing fiduciary duty more appropriately. Thus, considering the

relation between risk and ESG, the variance input of MPT models might capture only parts of the

full risk spectrum, which is why ESG considerations, where appropriate, should be included in the

most accurate way possible.

Related to risk considerations, the concern about inferior diversification effects (Sparkes, 2003)

caused by exclusionary screening may be tackled through including ESG criteria in portfolio construc-

tion. Depending on the applied constraints, a sophisticated portfolio construction method facilitates

the consideration of ESG measures on a continuous scale rather than being bound to the binary

decision when applying some exclusionary screening. An example for a method taking into account

such reasoning is given in the proposed method in Chapter 4. Also there are other examples for

portfolio weight shifting on the basis of ESG measures applied by actual funds as described in UN-

PRI (2016a); Nagy et al. (2013) elaborate weight shifting methods as well find portfolio performance

raised after underweighting low ESG scored assets.

The MPT belongs without any doubt to one of the most influential concepts of finance theory and

it is widely adopted in some form by institutional investors for comprehensible reasons. However,

the theory has been challenged in academia multifariously. The sole focus on stock prices and the

volatility thereof may be a too myopic set of inputs when shaping investment vehicles. Asset prices

are increasingly short term driven (e.g. by quarterly statements), i.e. stock prices lose the capability

to reflect long term estimates, objectives or strategies (Rappaport, 2005). That is, focusing on MV

criteria solely, which is a property of MPT approaches, potentially excludes this dimension to some

extent. This effect could be mitigated by incorporating ESG criteria systematically. More generally,
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Nielsen and Noergaard (2011) claim that integrated models (as opposed to dual decision, sequential

models) considering ESG as well as financial criteria are able to capture the value generated by

beneficial CSR properties of investees. Further it is left open in Nielsen and Noergaard (2011), how

such IQIE-models could look like. Yet in interviews with analysts and investors it was found that

they are willing to use more sophisticated methods that include ESG data.

A further reason to consider IQIE approaches is the ability to respond to changes in ESG scores

promptly in rebalancing the portfolio accordingly. As found in Wimmer (2012), ESG scores for

funds are on average persistent for approximately two years before they typically decrease. Yet, it

is found in the same study, that drops in ESG ratings were caused by RI fund managers’ changes to

their portfolios, not by decreasing ESG scores of the initial assets in the portfolios. Wimmer (2012)

concludes that this is due to the typical pattern found in RI funds of ESG screening in the first stage

and then performing strictly financial optimizing in the second stage. Once the portfolio is set up,

fund managers seem to lose the focus on ESG scores. The rebalancing property of IQIE approaches

is also favorable in the sense of managers being able to combine positive and negative screening in

terms of over- or underweighting due to ESG scores. In practice a balanced consideration of positive

and negative ESG considerations is neglected in favor of the mere use of exclusionary screens by a

majority.

When advocating sustainable investment as a societal phenomenon, the rationalization for frame-

works that quantitatively incorporate ESG measures lies in using instruments that most fund man-

agers are familiar with. Also, combining traditional financial portfolio optimization techniques with

ESG consideration enables fund managers to anchor large cap or large index allocations. This po-

tentially fits the needs of ESG investors not wanting to be exposed to the niche market risk of e.g.

impact investing (Quigley, 2009) or are to some extent bound by index tracking.

It seems that investors are only at the beginning of incorporating ESG more systemically and

taking RI to a more sophisticated practice than exclusionary screening. Recent publications of

networks like Eurosif (2014) show the emergence of IQIE approaches. In a surveyUSSIF (2015)

conduct interviews with signatories on how ESG concerns are actually integrated in the investment

process; most investors still maintain some form of ESG pre- and post-investment integration, some

of them investigate how to incorporate ESG criteria into portfolio construction. There are some
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approaches mentioned that include weight shifting according to ESG metrics. A promising result

regarding IQIE approaches is reported in Nagy et al. (2013). A strategy named ESG momentum that

overweights firms whose ESG ratings improved over the preceding period, results in superior risk-

adjusted returns and benchmark outperformance during 2008 to 2012, there was a similar outcome

for underweighting low ESG score assets. It is hypothesized that not only long term ESG effects

matter, but also accounting for short term ESG downgrades that are mainly event-driven contributes

to a strategies outperformance.

3.2 Underlying Theoretical Concepts

As most of the following approaches refer to Multi-Objective Optimization and the Modern Portfolio

Theory, these concepts are discussed preliminarily in the following subsections, before delving into

the single approaches.

3.2.1 Multi-Objective Optimization and Pareto Efficiency

Mathematically, many of the methods in scope of the present thesis are to be found in the realm of

Multi-Objective Optimization (MOOP)15. The typical MOOP problem set can be described in the

following generic form (e.g. Deb (2014)):

arg min
x

F (x)

subject to x ∈ S
(3.1)

where F (x) = (f1(x), f2(x), . . . , fk(x)) is a set of objective functions, x = (x1, . . . , xn) is a vector

of decision variables and S is the feasible set as defined by a set of constraints. To formalize the

mapping between the n-dimensional decision variable space X and the m-dimensional objective space

Z it is defined that for each solution x there is a representation in the objective space that is defined

as f(x) = z = (z1, z2, . . . , zM ). Typically, such problems feature conflicting objective functions and

require to find a set of Pareto optimal (non-dominated, efficient) solutions. In the majority of cases,

15 MOOP is a sub-discipline of Multiple Criteria Decision Analysis (MCDA), which itself belongs to the area of
Operations Research.
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there is no single solution but several efficient solutions to MOOP. Mathematically, Pareto efficiency

is defined as follows (Ehrgott, 2006; Miettinen, 2012):

Definition 3.1. For a set of minimizing objective functions, a decision vector x∗ is said to be

Pareto efficient or non-dominated if and only if there exists no x ∈ S, such that fi(x) ≤ fi(x∗), for

all i ∈ {1, . . . , n} and fj(x) < fj(x
∗) for at least one objective function j. It is said to be weakly

Pareto efficient if and only if there exists no x ∈ S, such that fi(x) < fi(x
∗), for all i ∈ {1, . . . , n}.

Equivalently, the same holds true for the objective space Z; z∗ is Pareto efficient if the corresponding

decision vector is Pareto efficient. 4

For a graphical representation of (weak) Pareto efficiency in the case of two objective functions,

see Figure C.1 in Appendix C. A well known set of Pareto optimal solutions in a financial theory

context is the Efficient Frontier in the plane spanned by standard deviation and expected return in

the MPT framework (see Section 3.2.2). Typically, Pareto optimal solutions represent solutions that

are acceptable or potentially optimal according to the specification of a decision maker; to narrow

down the set of solutions further or to determine the best solution, usually additional information

on preferences is needed (Coello et al., 2002). Related to this, in literature two main categories

of tackling MOOP are distinguished: A priori methods feature the determination of the decision

maker’s preferences before any optimization task is performed; in a posteriori approaches the set of

trade-off solutions is first found and then a single preferred solution is determined (Deb, 2014). There

are numerous methods of finding solutions to MOOP. They may be categorized in classic methods

as the weighted sum or the ε-constraint approach (s. also Section 3.3) to name the most popular,

and on the other side the stochastic search strategies such as evolutionary algorithms approximating

Pareto optimal solutions, where in analogy to natural evolution, solution candidates are treated

as individuals and a set of solution candidates as population (Zitzler et al., 2004). Thus, Pareto

efficient sets are often computed approximately. For most search algorithms therefore special vectors

as starting points in the Z space are defined that facilitate the search for efficient solutions, for more

details on these vectors see Appendix A.6.

Risk, Return, Responsibility



3.2. UNDERLYING THEORETICAL CONCEPTS 31

3.2.2 Modern Portfolio Theory

Inter alia based on the economic principle of Pareto efficiency, Markowitz developed the MPT

(Markowitz, 1991) back in 1952.16 The MPT framework is one of the key pillars of financial theory.

It covers portfolio optimization with respect to expected return (mean) as the desirable part coming

at the price of risk (variance). The core insight of MPT is that within a portfolio of many risky assets,

it is not the risk of the single assets that matters, rather the contribution of the assets to the overall

portfolio risk, giving rise to the idea of interrelated returns and diversification. By assumption a MV-

investor forms beliefs about returns that are random variables, their volatility and the covariances of

return movements. As the returns are not known beforehand, but the optimization has to be carried

out in terms of expected values, the optimization is a stochastic programming problem. Based on

those estimates, and for the time being an asset universe without a riskless asset assumed, a portfolio

is chosen out of the set of all portfolios constituting the Efficient Frontier according to the investor’s

preferences. The Efficient Frontier is a subset of the minimum variance set, which includes all feas-

ible portfolios for any given level of expected portfolio return and minimized portfolio variance. The

latter has the form of a parabola and only the subset above the global minimum variance portfolio is

considered as efficient (see Figure ?? and C.2 in the corresponding Appendices). Portfolios below are

dominated, i.e. not efficient, since there is a portfolio with the same standard deviation but a higher

expected return on the upper opposite of the parabola.17 The minimum variance set is defined by

the following equation: 
arg min

w
w′Σw

subject to w′µ = µPF

w′1 = 1

(3.2)

where w is a vector of N portfolio weights in the case of N risky assets, w′ is w transposed, Σ is the

positive definite matrix of N ×N covariances, µ is a vector of N expected returns, with E(Ri) = µi

and Ri =
Pricei,t
Pricei,t−1

, µPF is the expected return of the portfolio, here at a given (required) level and

1 is a vector of N ones. For the derivation of the portfolio variance see Appendix A.2. Problem 3.2

16 For an in-depth analysis consider Hens and Rieger (2010) being the main source of the following content.
17 For a visual representation of the Efficient Frontier and some explanatory remarks with respect to Pareto efficiency

see Appendix A.4.

Risk, Return, Responsibility



3.2. UNDERLYING THEORETICAL CONCEPTS 32

can be solved by minimizing a Lagrangian function of the form

L =
1

2
w′Σw + γ(µpf −w′µ) + δ(1−w′1) (3.3)

with γ and δ as Lagrangian multipliers.18

If by assumption all assets are risky, the answer to which portfolio a MV investor should choose

out of all the possibilities on the Efficient Frontier is answered by means of some utility function. In

a MPT context, a rational investor’s preferences are modeled based on an expected utility function

satisfying axioms defined by Von Neumann and Morgenstern (1947) (s. Appendix A.5 for a definition

of the axioms). For a utility function to reflect rational preferences, it has to meet the requirement

of continuity, being monotonically increasing and bounded or asymptotically increasing (Hens and

Rieger, 2010). Also, when utility is attributed to an uncertain monetary outcome, usually the

assumption of risk aversion is made. This essentially means that a risk averse person prefers to get

an amount with certainty as opposed to gambling for the same expected amount under uncertainty.

It does imply that the expected value of an uncertain payoff must be at least a specific risk premium

above the a certain payment for the risk averse agent to enter the lottery. For further explanations

concerning concave utility functions and risk aversion see Appendix A.7. One specific functional

form that is frequently used in a MPT context (e.g. Hens and Rieger (2010)) is the quadratic utility

function of them generic form:

Ui(µPF , σ
2
PF ) = µPF −

ρi
2
σ2
PF (3.4)

with Ui being the utility for investor i, σ2
PF the portfolio variance and ρi the risk aversion parameter

specific to the individual investor, quantifying the required compensation for risk with return, and

the other variables as described above. Portfolio return increases utility, while portfolio variance

decreases it depending on the risk aversion parameter. The latter determines where an investor’s

highest utility indifference curve is tangential to the Efficient Frontier, i.e. the position of the optimal

portfolio for the investor in the MV space. Mathematically, the optimal portfolio for investor i is

18 For a step-by-step solution of this problem see Hens and Rieger (2010) or Zuber (2012).
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found by solving arg max
w

w′µ− ρi
2 w
′Σw

subject to w′1 = 1
(3.5)

The optimization setup changes if a riskless asset is introduced, i.e. an asset without any volatility.

Conceptually, an investor is now able to borrow or lend money at the riskfree rate Rf . In this

environment, any combination of the tangential portfolio19 and the riskless asset lies on the Capital

Allocation Line (CAL) (see Figure C.2 in Appendix C), which essentially reduces an investor’s

optimization problem to deciding on the proportions attributed to the risky tangential portfolio and

the riskless asset according to the individual risk aversion. Mathematically, the optimal portfolio for

investor i is found by solving the (unconstrained) maximization problem

arg max
w

Ui(µPF , σ
2
PF ) = arg max

w
Rf +w′(µ−Rf1))− ρi

2
w′Σw (3.6)

with the first order condition and optimal portfolio weights w∗

∂U

∂w
= µ−Rf1− ρiΣw = 0⇐⇒ w∗ =

1

ρi
Σ−1(µ−Rf1), (3.7)

where Σ−1 is the inverted covariance matrix.20 Equation 3.6 shows that, except for the scaling scalar

ρi each investor is invested in the same portfolio of risky assets, which is the basic idea of the Two

Fund Separation Theorem stated by Tobin (1958). Only the proportion of the amount invested in

the risky portfolio and the riskless asset differs among investors. For a graphical representation of

the CAL and the separation theorem see Figure C.2 ind Appendix C.

3.3 Multi-Objective Optimization Methods

There is an extensive body of literature (e.g. Ehrgott et al. (2004), Lo et al. (2003)) on the implement-

ation of Multiple Criteria Decision Analysis (MCDA) or MOOP methods in a portfolio optimization

19 The tangential portfolio refers to the risky portfolio that maximizes the slope in the return and risk space, when
a line through the riskfree asset and the risky portfolio is drawn.

20 Note that the weight w0 attributed to the riskless asset can be expressed by w0 = 1−w′1, where
w = (w1, w2, . . . , wn) for N risky assets. Thus, the constraint is substituted into the objective function in equation
3.6, as µPF = w′µ+ (1−w′1)Rf .
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context with a multitude of criteria additional to mean and variance, such as liquidity, dividends,

sustainability. In this section, the focus lies on literature contribution with at least some relation to

ESG.

To outline the basic principle of such methods, two of the most prominent basic approaches in

the classic field of MOOP, the above mentioned weighted sum and the ε-constraint approach are

discussed.

The weighted sum method consists basically of scalarizing a set of objectives by the attribution

of weights to the objective functions and optimizing the weighted sum. This may be formulated as

follows: arg min
x

∑k
i=1 λifi(x)

subject to x ∈ S
(3.8)

where S is the feasible set as defined by a set of constraints, λi is a set of weights, where
∑k

i=1 λi = 1

and λi ∈ [0, 1]. The weights λi determine the location of the weak efficient solution to Problem 3.8 on

the set of efficient solutions.21 To compute the Pareto efficient set, Problem 3.8 is solved for different

weight combinations. For a visual representation of the weighted sum approach as well as the below

mentioned ε-constraint approach, see Figure C.3 in Appendix C. The weighted sum approach is a

simple method to tackle a MOOP, yet, depending on the setup, it might not capture all solutions due

to several issues, also finding Pareto optimality with this method does necessitate convexity (Deb,

2014; Ehrgott et al., 2004).

The ε-constraint method overcomes several of the shortcomings linked to the weighted sum ap-

proach. For instance, convexity is not a necessary condition for finding efficient solutions. Haimes

et al. (1971) reformulate the generic MOOP from Problem A.10 in such a way that just one objective

is retained while the other objectives are treated as constraints. The problem for the jth out of k

objective functions becomes


arg min

x
fj(x)

subject to fi(x) ≤ εi, i = (1, . . . , k),∀i 6= j

x ∈ S.

(3.9)

21 For a proof that the solution to Problem 3.8 is (weakly) efficient see Appendix B.1.
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Problem 3.9 is solved for j = (1, . . . , k) and for different values of the ε constraints to generate

the Pareto efficient set. The success of an algorithm based on this method is highly dependent on

choosing ε values. For a proof that the solution to Problem 3.9 is weakly efficient, and under which

conditions it is strictly efficient, see Appendix B.2. In a portfolio optimization context, ε-constraint

methods are particularly useful since the covariance function is strictly convex (see Appendix A.8 for

a definition, also Evstigneev et al. (2015) for further mathematical discussion). If there is a solution

to a strictly convex problem, this solution is unique and if it is unique, it is strictly efficient (see

Appendix B.2 for a proof), which reduces the computational effort to generate the efficient set. For

a graphical representation of the weighted sum and the ε-constraint approach in the case of two

objective functions, see Figure C.3 in Appendix C.

Both, the weighted sum approach as well as the ε-constraint method are implemented by Lund-

ström and Svensson (2014) in an ESG context based on the following problem:



arg max
w

w′µ

arg min
w

w′Σw

arg max
w

w′γ

subject to w′1 = 1

0 ≤ wi ≤ 1 ∀i ∈ (1, . . . , N)

(3.10)

Optimization Problem 3.10 maximizes the portfolio return, while minimizing the portfolio variance

and maximizing the portfolio ESG-performance, where γ is a vector of N expected ESG-performace

values.22 The constraints for the weights summing up to unity and taking a value between 0 and

1 do not allow for short selling. To find solutions to problem 3.10, on the one hand, the follwing

weighted sum approach is formulated:


arg min

w
−λ1w

′µ+ λ2w
′Σw − λ3w

′γ

subject to w′1 = 1

0 ≤ wi ≤ 1 ∀i ∈ (1, . . . , N),

(3.11)

22 Lundström and Svensson (2014) construct an index value and assume it to feature Martingale properties, i.e. the
expectation is equal to the last observed value.
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where the λi with i = (1, 2, 3) are non-negative weights and λ1 + λ2 + λ3 = 1. For different values

of weighting λ parameters, different nondominated solutions are found. On the other hand, the

ε-constraint method is set up as:



arg min
w

w′Σw

subject to −w′µ ≤ −ε1
−w′γ ≤ −ε2
w′1 = 1

0 ≤ wi ≤ 1 ∀i ∈ (1, . . . , N),

(3.12)

where different nondominated solutions are found by the variation of ε values. 23. The output

generated by both methods is a set of points spanning a three dimensional efficient surface, that

also may be represented by contour lines of the same level of one goal. In order to simulate a

portfolio selection, Lundström and Svensson (2014) conduct a typification of investors according to

a set of criteria. Each hypothetical investor fixes first a percentage value for one of the goals, which

determines the location on the minimum / maximum interval of that specific goal. Then for a second

goal either the minimum or the maximum is chosen. Specifying a third criterion is redundant, since

every portfolio is uniquely determined by two criteria. According to this, an exemplary investor

might feature preferences as ESG:75%, Volatility: ’Min’, Expected Return: ’none’.

Similar to Lundström and Svensson (2014) Hirschberger et al. (2013) suggest a tri-criterion

method. The a-priori approach is chosen to incorporate an additional ESG criterion similar to

Lundström and Svensson (2014), yet the way of generating the efficient frontier is somewhat more

sophisticated. Instead of applying ε-constraints, here the nondominated surface is computed analyt-

ically. While the nondominated MV set technically is a collection of curved archs, the nondominated

surface is a collection of curved platelets rather than a collection of single points (s. Figure 3.1).

Hirschberger et al. (2013) compute polyhedra called stability sets to construct the nondominated

surface. The underlying initial problem is given in Appendix A.10. The latter is condensed into the

23 In Lundström and Svensson (2014), Problems 3.11 and 3.12 are solved by using the quadprog algorithm of the
commercial software Matlab. Quadprog is a solver based on either an active-set strategy or an interior reflective
Newton method (Geletu, 2007)
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maximization problem

arg max
w

−w′Σw + (−c1 + λ2 c2 + λ3 c3)′w

subject to w ∈ S,
(3.13)

where c1 stems from including a lower bound constraint directly in the maximization problem, c2 is

defined as a vector of expected returns and c3 is a vector of quantities attributed to some third goal.

The vector λ = (−1, λ2, λ3) with λ2, λ3 ≥ 0 is defined as the weighting vector. In contrast to the

weighted sum approach necessitating a dispersion of different points of (λ2, λ3), Hirschberger et al.

(2013) construct the efficient surface applying the Karush-Kuhn-Tucker-Conditions in a parametric

pivoting procedure.

In an empirical evaluation, Hirschberger et al. (2013) implement the developed algorithm to a

problem linked to sustainable investing as the third objective dimension. For this purpose the ESG

score is defined as the third goal c3 to maximize. To generate single portfolios which are empirically

compared to funds in the market, hypothetical investors with different pairs of λ2 and λ3 weightings

are assumed. As opposed to Lundström and Svensson (2014) the minimization of volatility is assumed

as a fixed goal, such that and investor with (λ2, λ3) = (0, 0) considers the minimum variance portfolio

as optimal allocation.
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σ

ESG

µ

Figure 3.1 – This illustration shows the efficient set in S on the left hand side and the plateletwise hyperboloidic
nondominated set. The feasible space on the left is more of a portrait of S since for an asset space of N > 3 assets,
which is usually the case, there is no visual representation for S. The efficient set in S consists of polyhedral
subsets, platelets. The latter are projected into the objective space and form the nondominated surface composed
of hyperboloidic platelets. The grey platelets are correspeondents and visualize the projection. The three goals
on the right clockwise are the (expected) ESG-score, the expected return and the standard deviation. (Source:
own figure based on Steuer et al. (2008))

3.4 Multi-Objective Optimization and Fuzzy Logic

A further approach linked to MOOP is covered in Bilbao-Terol et al. (2012), combining MOOP

and fuzzy logic. The decision here is modelled as a fuzzy goal programming approach with three

main criteria groups: (i) the expected return of the portfolio; (ii) the return of the portfolio in each

past and future period since the tracking error with respect to a certain benchmark is relevant and

(iii) the imprecisely known investor preferences about RI features of the titles. Fuzzy logic is to be

understood as alternative to boolean logic with values of variables being either true (1) or false (0).

It allows for values to lie between 0 and 1, i.e. to belong to a specific set to a certain degree. The

latter is formalized by means of a membership function νÃ that attributes a degree of possibility

for a variable x out of the universal set X to be in the fuzzy set Ã. A fuzzy set Ã is thus a set of

ordered pairs, often written as Ã = {x, νÃ(x) | x ∈ X}. Furthermore, a real fuzzy number Ñ on R is

defined by a upper and semi continuous membership function νÑ : R→ [0, 1]. In Bilbao-Terol et al.

(2012), a trapezoidal fuzzy number is applied, where the membership function is linearly increasing

on a defined interval [n1, n2], equal to one on [n2, n3] and decreasing on [n3, n4]. Fuzzy numbers may

also be understood as possibility distributions (Bilbao-Terol et al., 2012). For the portfolio selection
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model a standard MOOP is set up. For every objective function, the decision maker defines goals, s.t.

the found solution is closest to the defined goals. Hence, this approach provides not an optimization,

but rather finds a good enough solution. The expected return of any asset is modeled as a fuzzy

number Ẽ(Ri) based on historical realizations of asset returns and fuzzy weights stemming from an

expert’s input. This procedure, also called expert system, reflects the general view that expected

returns cannot be estimated confidently, but a set of possibility values can be attributed to different

future realizations of the returns. Portfolio return itself as a weighted sum of the single expected

returns is again a fuzzy number. As the optimization applied in this paper minimizes deviations from

some ideal goal, a vital task is the determination of the target value. In case of expected portfolio

return24 Ẽp = Ẽx, to this end the ideal fuzzy number E∗R0 representing portfolio return results from

the maximization of the portfolio return under a set of feasible constraints (long only, weights sum

up to unity). The authors apply a method to minimize the undesirable negative deviation of the

final portfolio from the upper end of the fuzzy number interval belonging to the ideal target return.

To this end, formally the fuzzy goal as defined as the fuzzy inequality condition Ẽp = Ẽx & Ẽ∗ turns

into the non-fuzzy goal EL0 ≥ E∗R0 , which for the sake of the minimization of deviations becomes the

equality constraint EL0 x+ nE − pE = E∗R0 , with nE and pE as deviation variables.25 Deviation by

the nature of the constraint will be undesirable negative, since the benchmark is the right side border

of the maximization of Ep. Similarly the negative deviation of the portfolio return from a benchmark

index as reference point for some finite amount of forecasting periods is aimed to be minimized. As

a third goal, ESG performance is addressed by the requirement of a minimum fraction m of the total

budget invested in assets that are socially responsible, i.e.
∑n

i=1 xi & m. This is expressed in terms

of the following membership function:

µSR(x)


0 if

∑n
i=1 xi < m− h

strictly monotonically increasing if m− h ≤∑n
i=1 xi ≤ m

1 if
∑n

i=1 xi > m

(3.14)

24 Where Ẽx =
∑n
i=1Rixi and xi is the portfolio weight.

25 The lower 0 index denotes the α-cuts; for α ∈ [0, 1] the α level set is a set Nα = {x ∈ R | µÑ (x) ≥ α]}, which is a
closed bounded interval denoted by [nLα, n

R
α ].
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where h in Expression is the tolerance threshold as set by the investor. The final goal programming

model puts weights on each of the three goals and minimizes the overall sum of deviations under the

feasible set of constraints of all fuzzy goals simultaneously. At the bottom line, this is what qualifies

fuzzy goal programming as an adequate approach to the ESG incorporation problem: it allows for

defined goals being treated as soft constraints causing deviations to be allowed but minimized. This

procedure generates the best among all acceptable goals for the decision maker.

3.5 MV Optimization with an Additional Linear Constraint

Drut et al. (2010) address the task of quantitative ESG incorporation into portfolio optimization

in a straight forward way and introduce a linear constraint to the classical Markowitz model. As a

starting point, recall the classical MPT Problem 3.5 from Section 3.2.2:

arg max
w

w′µ− ρi
2 w
′Σw

subject to w′1 = 1

In this context, the solutions to Problem 3.5 form the Social Responsibility (SR) insensitive

efficient frontier in the µ,σ plane. The SR rating of a portfolio is introduced as φp = w′φ with

the vector of single ratings φ = [φ1, φ2, . . . , φn]. This implies the necessary assumption that the

rating is additive, i.e. the dot product is meaningful as the weighted sum of ratings equals the

portfolio rating. The analytic solution of the Langrangian of Problem 3.5, i.e. the optimal MV

portfolio in a universe without a riskless asset,26 for the weight vector w is multiplied with the

vector of the SR ratings φ. As the portfolio return w′µ and the portfolio’s social responsibility

rating w′φ are both linear functions of 1/ρi, where ρi is the risk aversion parameter of investor i,

the rating of the portfolio can be rearranged into the linear relation

φp = δ0 + δ1µp (3.15)

with µp being the expected portfolio return and δ0 and δ1, both determined by the variables µ, φ

and Σ−1.27 As Expression 3.15 is derived from the optimal solutions, it delivers the SR ratings

26 See e.g. Zuber (2012), Appendix A3 for a detailed derivation of the solution.
27 For details, see Drut et al. (2010).
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of any portfolio lying on the SR insensitive efficient frontier. The sign of δ1 can be both, positive

or negative; for instance the portfolios with highest returns may belong to the best or worst SR

rated portfolios. In other words, given by the logic of the efficient frontier, if δ1 > 0, riskier optimal

portfolios (higher return) get better, if δ1 < 0 riskier portfolios get worse SR ratings. Allowing for

investors being sensitive to the SR rating of their portfolio the optimization problem is now defined

as follows: 
arg max

w
w′µ− ρi

2 w
′Σw

subject to w′1 = 1

φp = δ0 + δ1µp ≥ φi

(3.16)

with φi as the required minimum SR rating level of investor i. For solving Problem 3.16, an approach

developed by Best and Grauer (1990) following parametric quadratic programming methods is ap-

plied. As a consequence of the additional linear constraint, the shape of the (SR-sensitive) efficient

frontier may alter depending on the sign of δ1 and on the threshold value φi. The authors distinguish

between four different cases, which correspond to the combination of (i) the sign of δ1 and (ii) the ≶

relation of φi to some endogenously given level φ0. Either the SR sensitive and insensitive frontiers do

not differ at all, are congruent above (below) a specific corner portfolio and divergent below (above)

it or show no congruence at all. In any case, a deviation from the SR insensitive efficient frontier

results in a less efficient solution, i.e. in this model depending on the constraint defined by the

investor responsible investment comes at the cost of abandoning efficiency to a certain degree. Also,

the authors emphasize that the height of that cost depends largely on the risk aversion parameter of

the investor. For instance, if only the right portion of the SR sensitive efficient frontier is penalized,

only low risk-aversion investors exhibit higher cost. Generally, a similar trade off between SR and

MV efficiency results, when a riskfree asset is introduced, altering the position of the tangential

portfolio according to the relocated SR sensitive efficient frontier.

(Jessen, 2012) develops two methods, one of which features an additional linear constraint to

MV optimization similar to Drut et al. (2010). Yet, the problem is tackled via the minimization

of portfolio variance maintaining the constraints of a given expected return and a specific level of

portfolio responsibility, which is a weighted sum of k ESG criteria for N assets. The difference to

Drut et al. (2010) is that there is no individual risk aversion parameter taken into account. Jessen
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(2012) solves the minimum variance analytically by means of Lagrangian multipliers. The absence of

the necessity to specify ex ante preferences of an investor is considered as advantageous as opposed

to utility driven approaches .

3.6 Utility Theory Based Approaches

A possible way of quantitative integration of ESG criteria into portfolio construction is tackling

the problem via utility theory. Although the utility conception is generally an integral part of

portfolio optimization, Jessen (2012) focuses on utility theory as a method. In this approach it is

assumed that a set of ESG factors have some economic intuition and should be incorporated into

a Von Neumann Morgenstern (VNM) utility framework (s. also Appendix A.5) with respect to

institutional investors. The VNM utility has the most general functional form u : M→ R, where M

is the domain of all possible outcomes. In the more specific setup of this approach the utility function

maps investment return x and portfolio responsibility s to some utility quantity in the set of real

numbers u : (x, s) 7→ R. An investor’s utility function with respect to financial return is assumed to

be monotonic, quasi-concave, continuous and globally nonsatiated, which means that more wealth

is preferred, yet marginal utility diminishes, the higher returns are. Also, the investor is assumed to

be risk-averse. As the feasible portfolios are bounded by no-short-selling constraint, the domain is

defined as M = [−1,∞)× [−1, 1]. According to Jessen (2012) an investor is considered a responsible

investor if

∀{s1, s2} | s1 ≥ s2 : u(x∗, s1) ≥ u(x∗, s2) (3.17)

where x‘∗ ∈ [−1,∞) and s ∈ [−1, 1] and u is an increasing utility function as described above. This

implies that greater portfolio responsibility is able to generate more utility ceteris paribus, that is

u(x∗, s1) = u(x∗, s2) +4u (3.18)

with 4u > 0 and s1 > s2 or equivalently

u(x∗, s1) = u(x∗ +4r, s2) (3.19)

with 4r as the return premium that is required to compensate the lesser utility due to the lower

portfolio responsibility. Note, that the amount of 4u is not comparable across different utility
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functions, 4r on the opposite is. Jessen (2012) makes some examples of functional utility forms,

starting with the generalized affine combination

u(x, s) = (1− α)u1(x) + αu2(s) (3.20)

where α ∈ [0, 1] is the weight the investor attributes to utility coming from portfolio responsibility

as compared to utility from the financial outcome. The functional form of u may be for example

u(x, s) = (1− α)ln(x+ 1) + αln(s+ 1) (3.21)

where ln is the natural logarithm function, the addition of 1 to is due to the logarithm function

only being defined for inputs greater than zero. An interesting form of utility is proposed in another

example inspired by the Prospect Theory value function of Kahneman and Tversky (1979). It is

s-shaped asymmetric regarding the s-component with the symmetry axis crossing s = 0, some utility

if s ≥ 0 and disutility if s < 0. It reflects that deviations from the reference point s = 0 may be

translated into units of utility in different ways. Jessen (2012) points out that the form of u usually

has to be assumed and may not be estimated. Yet, it is argued that this might be a problem for the

retail investor. Institutional investors, however, might develop their own methods to specify a utility

function.

3.7 Splitting Methods

There are several approaches that split the portfolio selection problem in some way. Hallerbach et al.

(2004) propose a framework to find the optimal portfolio in interaction with the ESG concerned

investor. Therefore every security in the asset universe is characterized by k attributes, for instance

governance or employees labor rights, but also financial attributes as book to market value or total

return. In a first step under the constraint of some general maximum portfolio weight per stock,

feasible portfolios each with one of the attributes maximized (for the sake of simplicity) are found in

a multiple goal programming framework. The investor is then confronted with the feasible portfolios

and asked to choose the most acceptable. If there is none, then the minimum requirements have to be

adjusted to generate a new set of feasible portfolios with respective values. While this procedure may

be potentially circuitous, on the upside there is no beforehand specification of investor’s preferences
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needed.

A rather unconventional two-step approach is developed by Bilbao-Terol et al. (2013) featuring a

hedonic pricing method that provides the maximum level of financial satisfaction in the first stage,

followed by the second stage selecting the portfolio of the best social and financial portfolio with the

portfolio from the first step acting as benchmark. The hedonic pricing model assumes that the price

of a good is linearly depending on a set of attributes of this good driving the price. In Bilbao-Terol

et al. (2013), the exposure of the portfolio to a specific factor (e.g. labor rights) is expressed as a

weighted average of the exposure of all assets in the portfolio:

SRf (w) =
n∑
i=1

ptifPiTxi (3.22)

where w is the portfolio weight vector, ptif is the score of asset i on attribute f and PiT is the price

of asset i at investment date T . The objective that is maximized in the portfolio selection process is

SR(w) =
F∑
f=1

h∗fSRf (w) (3.23)

where h∗f denotes the hedonic price of attribute f . It is generated by means of a empirical hedonic

regression. The generic portfolio selection model consists of maximizing the Expected Value at

the End of the Period (EVE), maximizing SR as in Equation 3.23, and minimizing some Risk

Measure RM , which either could be the portfolio variance or the conditional value at risk (potential

downside). The problem is then split into two stages. Stage 1, the maximization of financial wealth

is conducted in two steps. (i) minimizing RM and maximizing EV E subject to the usual constraints

(no short-selling, whole budget invested) by means of an ε-constraint method (see also Section 3.3)

to approximate the efficient frontier; (ii) to obtain the portfolio that optimizes the financial needs

of the investor the certainty equivalent is applied. The latter is often applied in practice to quantify

utility, it is the amount paid with certainty yielding the same utility as the expected utility of the

risky allocation (see also Appendix A.7). Obviously, this requires the assumption of some specific

functional form of utility. To form expectations over asset prices Bilbao-Terol et al. (2013) conduct

a Monte Carlo simulation. The portfolio with the highest expected utility, and thus the highest

certainty equivalent is chosen and specified by EV E∗ and RM∗. Thereafter, in stage 2, an ε-

constraint method is used to maximize SR(w) implementing bounds as constraints that are close

to EV E∗ and RM∗. Also, the possibility of shifting the bounds in interaction with the investor is
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given in this approach.

Instead of splitting the optimization process as described above, there are also approaches to

split the asset universe. Ballestero et al. (2012) group the securities being candidates for a portfolio

into ethical assets, and those that are not considered as such. Mathematically, this is implemented

in defining the two subsets of S∗ of h ethical assets and m − h remaining assets that are only

characterized by financial criteria. This approach also addresses a goal programming problem by

minimizing the portfolio variance. Yet the problem of incorporating lies in the formulation of the

constraints:
m∑
i=1

wiµi ≥ g0 and
h∑
i=1

wiµi ≥ e0 (3.24)

where g0 is the minimal goal defined for the portfolio return of the non-ethical assets and e0 for the

assets. The investor then specifies some λ ∈ [0, 1] expressing the aspiration level for ethical goals in

order to determine e0 = λµmax, where µmax = max(µ1, µ2, . . . , µh). This requires a distinction of

two cases: (i) if λ = 1 there is exactly one solution, namely xp = 1 for p being the index assigned

to µmax, i.e. the decision maker invests her whole money into asset p; (ii) if 0 ≤ λ0 < 1, the higher

λ0 the higher the ethical target. This second case implies that
∑h

i=1wi = q ≥ λ0; q ≤ 1. The logic

behind this argument follows directly from the definition of e0 and the right hand side constraint of

expressions 3.24: provided weights wi ∈ [0, 1] and the specific choice λ0, since the weighted sum of

any vector µ is less than its maximum and the constraint requires the left hand side to be at least

equal or greater than e0,
∑h

i=1wi must be at least equal or greater than λ0. That is, the choice

of λ also determines 1 − q, the proportion of the sum of weights of the non ethical assets, since it

is assumed that
∑h

i=1wi +
∑m

i=h+1 = 1. Thus, the incorporation of ethical preferences is achieved

by splitting the asset universe and shaping the constraints accordingly. Besides the input of λ, in

Ballestero et al. (2012) also the investor’s Absolute Risk Aversion (ARA) coefficient for both subsets

of assets have to be estimated.

3.8 Nonfinancial Return Approaches

The concept of a social return on investment and the blending of social and financial value is elab-

orately discussed in Emerson (2003). An implementable way of incorporating so called sustainable
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returns into portfolio return is e.g. discussed in Dorfleitner and Utz (2012) and Dorfleitner et al.

(2012). These contributions follwing both, a MV- as well as a saftey first approach, treat the value

generated by investing responsibly similar to the financial value and thus optimize not only with

regard to the financial return but also to return in terms of responsibility. That means in particular

that the MV nature of financial returns based on their stochastic character is adopted to the sus-

tainability of investments. In Dorfleitner et al. (2012) it is assumed that an investor receives at the

end of a period a financial payoff of v0(1 + R), where v0 is the initial value and R is the financial

return, as well as v0 ∗ S with S as the non-monetary social return. A portfolio A is considered as

efficient if there is no portfolio B such that

1) µRA ≤ µRB ; 2) µSA ≤ µSB ; 3) σRA ≥ σRB ; 4) σSA ≥ σSB ; 5) σRA,SA ≥ σSA,SB , (3.25)

with at least one strict inequality, where µ and σ stand for the corresponding expected portfolio

return and standard deviation. The fifth condition is expressed in terms of the covariance of the

financial return with the social return, stating that portfolios with low covariances are preferred. The

argument therefore is that with a low or negative covariance, an investor may get comfort in high

social returns, when financial returns are low. In order to formulate an investment goal, Dorfleitner

et al. (2012) consider two approaches, either to aggregate financial and social goals or to formualte

preferences for the two of them. The efficient frontier is found solving the following optimization

problem:arg max
w

β1µRP (w) + β2µSP (w)− β3σ
2
RP

(w)− β4σ
2
SP

(w)− β5σRP ,SP (w)

subject to w′1 = 1
(3.26)

with βi being a preference factor for goal i and β3 = 1 for redundancy reasons. The aspect of

covariances deserves attention, since for every pair of assets i and j six of them determine the

optimal solution: the financial covariance σRi,Rj , social covariance σSi,Sj , financial and social intra-

asset covariances σRi,Si and σRj ,Sj , financial and social inter-asset cross-covariances σRi,Sj and σSi,Rj .

The solution to Problem 3.26 is found by solving a Lagrangian, and there is a unique solution if the

matrix that comprises all covariances is invertible. Also, the solution depends on the four preference

parameters, i.e. w is a mapping of R4
+ to the efficient set E ⊂ R5. Dorfleitner et al. (2012) consider

also a simplified model with deterministic social returns with a remaining µ-S-σ efficiency, the

starting point of which is equal to Problem 3.26 with β4 = β5 = 0. Introducing a riskless asset
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in reference to Tobin (1958) whereby the risk aversion coefficient determines the proportions of the

tangential portfolio and the riskfree asset in the original version, it is proven in Dorfleitner et al.

(2012) that there is no specific tangential portfolio, since the optimal risky portfolio depends on the

β-preferences.

3.9 Weight Shifting Approaches

A straightforward way to include ESG considerations in portfolio optimization is the adjustment of

some benchmark’s weights due to ESG properties of the assets to invest in. The method developed

in Chapter 4 of the present thesis may be categorized as such an approach. In a practitioner oriented

publication, Nagy et al. (2013) aim to achieve an ESG-tilt to a portfolio, thus to improve ESG ratings

while maintaining risk, performance, country, industry and style characteristics of some benchmark

portfolio. This is achieved through two different strategies: (i) a tilt-strategy overweighting assets

exhibiting high ESGscores and underweighting the ones with low scores and (ii) an ESG-momentum

approach where the portfolio weights depend on the change of the ESG scores. The paper, how-

ever, focuses on empirical results advocating such strategies rather than discussing the optimization

methods applied. It is mentioned that the starting position is a market capitalization weighted

portfolio the weights of which are modified accordingly. It remains unclear how these weights are

shifted, yet, the referential market portfolio might hint at a Black-Litterman Model (BLM) based

method. Another example of portfolio weight shifting in a practitioner’s context is given in UNPRI

(2016a), where ESG scores are assumed to cover risk characteristics that are not captured by pure

volatility. The authors claim to having devised a systematic way to incorporate the modified risk

profile of a poor ESG performer into portfolio construction, but refrain from discussing the method.

Similar to the method proposed in Chapter 4, Quigley (2009) makes use of the Asset428 ESG score

database to penalize assets with low ESG scores and favor such with high scores within the port-

folio optimization process. Additionally, the bottom score quintile of the assets is eliminated from

purchase consideration. For the implementation Quigley (2009) follow a dual benchmark strategy,

where the benchmarks act as reference portfolios for the optimized portfolio to be consistent with

28 The Asset4 database is an ESG database considering more than 250 key performance indicators provided by
Thomson Reuters.
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the predetermined level of market capitalization as well as to reduce the tracking error as defined by

optimization inputs.

The approach that is closest in terms of methodology as compared to the proposed method from

Chapter 4 is presented in Brandstetter and Lehner (2015) applying a modified BLM to incorporate

ESG measures. It is addressed to the portfolio management of institutional investors asking for meth-

ods to account for ESG criteria other than through negative screening. To make a clear distinction

between the here proposed method and Brandstetter and Lehner (2015), it is essential to understand

the basic functionality of the BLM. In principle the BLM allows to reconstruct the market portfolio

and to adjust the portfolio according to the inputs of the decision maker. The later quantifies investor

views by means of the view vector Q making statements about the expected (relative) performance of

the single assets in the portfolio. Additionally, in a covariance-like matrix Ω, the degree of certainty

about these views is added as an input to the mode. Brandstetter and Lehner (2015) use Q and Ω

to address the incorporation of ESG scores in alienating Q and assigning ESG risks via Ω. However,

in doing so, some of the main features of the BLM, namely to express and involve an investors views

and the uncertainty about them are dropped. On the opposite, the method proposed in Chapter 4

maintains these features and instead blends a structured diagonal matrix of ESG linked penalizing /

rewarding quantities with the posterior covariance matrix as generated through the standard BLM

process. In general, weight shifting approaches may be more pragmatic in an institutional investors

environment, providing a moderate way of incorporating ESG considerations and thus preventing

portfolios from being potentially under-diversified.

3.10 Discussion

The previous sections outline several approaches to address the problem of the integration of quant-

itative ESG considerations into portfolio construction and management in a quantitative manner.

As by the nature of the problem, optimizing portfolios with respect to financial criteria while consid-

ering non-financial criteria as well, multi-objective goal programming is obviously appropriate and

most of the screened publications refer to it in some form. Non-financial opimization is mostly linear

while variance minimization adds a quadratic programming optimization component to the MOOP.
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Judging from the different approaches tackling the problem by MOOP solving strategies studied for

this thesis, there seems to be an accumulation of ε-constraint type methods. Also, Markowitz is

cited in almost every approach, which is an indication of the MPT framework conceptualizing the

trade-off between financial return and risk in a way that is widely adopted among scholars as well

as practitioners. Many approaches may be interpreted as just an expanded version of the MPT.

Mathematically, in general, Markowitz-like minimum-variance optimization problems as analyzed

above are smooth, non-linear and convex, which implies that local minima are also global minima.

Such problems can be solved with Langrangian techniques. The problem of ESG integration may be

solved integrally in an overarching approach, or split into sub-problems. This duality may evoke the

necessity of a categorization of the different approaches in scope. Yet, this endeavor may not lead

to meaningful results, as the approaches share many components and differ non-systematically. In

principle, portfolio optimization considering ESG factors is addressed in most of the cited sources

by defining some non-dominated set of potential portfolios with respect to the involved criteria and

then finding a solution fitting an investor’s requirements. While the non-dominated set is by no

means bounded to three goals (mean, variance, ESG), this setup is chosen by most authors. This

goes along with some benefits, for instance a manageable complexity and also the possibility to visu-

alize the non-dominated set in the three dimensional space. In order to fulfill the quantification of

an investor’s views or needs, often some specification of preference parameters is needed to either

scalarize the objective function, i.e. to generate a single objective function including multiple goals,

or to find portfolios iteratively or approximately. There are also sources emphasizing the potential

difficulty to define specific functional forms for utility. Besides modeling utility, also the application

of multiple linear constraints is common. Another similarity among the papers in scope is the use

of some ESG score or rating in order to quantify the responsibility dimension, often provided by

professional providers, sometimes based on a proprietary set of rules. Apparently, ESG scores are

treated either as stochastic variables, which is consistent with the Markowitz framework where the

object of the optimization are expected values, or as deterministic values. The different approaches

studied for the completion of the present thesis also exhibit different grades of granularitiy in defin-

ing ESG preferences; some bundle all RI aspects into one single score, some feature preferences for

different sub-categories. Often, a weighted sum of the asset’s ESG scores is defined as the portfolio
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ESG measure. There are also strategies incorporating the change in scores within the past period.

The way of how an ESG strategy is implemented is also different depending on the assumptions on

how responsible investing influences the portfolio performance. For instance, if MPT is applied in a

very strict way, then every restriction to the portfolios lying on the efficient frontier goes along with

an abandonment of efficiency resulting in inferior frontiers. That is, the responsible investor has to

be willing to concede financial return from this point of view. Yet, there are also approaches that

assume superior risk adjusted returns linked to ESG compliant investments, penalizing low perform-

ing titles in terms of ESG and favor top performers. It is noticeable that most of the papers do not

specify the investor, which is in most economic applications a reliable method, when it is referred

to the generic representative investor. However, as discussed in Section 2.3, the demand for a sys-

tematic ESG integration is to be found in the institutional sector rather than by private investors.

Yet, prevalently there seems to be a gap between the specific needs of this investor category, i.e.

for instance benchmark reference or the conceptual proximity to MV principles, and the solutions

provided in literature. This may not be helpful to overcome barriers hindering such investors from

incorporating ESG measures more systematically. More practitioner oriented approaches as Nagy

et al. (2013),Quigley (2009), Brandstetter and Lehner (2015) or the method proposed in Chapter 4

try to fill this gap.
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Chapter 4
A Black Litterman based Approach

The following chapter proposes a method based on the Black Litterman Portfolio Optimization

Model. It discusses the basic concepts in Section 4.1 and develops the incorporation of ESG criteria

in Section 4.2

4.1 The Black Litterman Model and its elementary Components

4.1.1 Market Equilibrium

As the BLM is an equilibrium based model, it is important to understand what kind of market

equilibrium is referred to. In a nutshell: the Capital Asset Pricing Model (CAPM) as a cornerstone

of financial theory with its foundation laid by Sharpe (1964), Lintner (1965) and Mossin (1966) models

a market with an economy of agents, all investing according to the principles as defined in the MPT

(Markowitz, 1952) and the separation theorem (Tobin, 1958) (see Section 3.2.2). As any investor in

such an economy is rational in the sense of a Markowitz setup, there is only one optimal portfolio

of risky assets, namely the tangential portfolio. According to the investor’s own risk preferences and

due to the separation theorem, there are three possible ways to be invested in this economy. (i) To

be fully invested in the tangential portfolio; (ii) to hold some linear combination between holding the

riskfree asset and the tangential portfolio (and as not the whole wealth is invested in the tangential

portfolio lending money to other agents at the riskfree rate); (iii) holding more than 100% of the
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tangential portfolio, i.e. borrowing at the riskfree to buy the tangential portfolio. Aggregated over

the whole economy, the market is said to be complete and to clear, the borrowing and lending part

cancel out and the agents hold mutually the Market Portfolio (MPF). This is an obviously simplified

view based on some assumptions: all market participants share the same expectations about future

cash flow coming from the assets at the end of the investment period, implying also that all investors

plan for the same holding period. It is also assumed that investors in the CAPM economy are price

takers, that is their trading on the market remains without impact on the prices. Moreover, it is

assumed that the market contains all publicly tradable assets, and asset returns are assumed to be

normally distributed. A further simplifying assumption is the lack of taxes and transaction costs.

One of the key statements of the CAPM is that the only risk an investor gets compensated for

is the market risk, also known as systematic risk. That is, the expected return of any asset j in the

market is a linear function of the co-movement of that asset with the market, while the idiosyncratic,

non-systematic risk is irrelevant for the return as it is diversifiable. This relationship is expressed as

follows:

µj −Rf = βj(µM −Rf ) (4.1)

where µj is the expected return of asset j, Rf is the riskfree rate, βj =
σj,M
σ2
M

the fraction of covariance

of the returns of asset j with the market return in the nominator and the market variance in the

denominator.29 A graphical representation of the equilibrium and β measure reasoning is given in

Figure C.4 in Appendix C.

However, for the derivation of the BLM the β logic is secondary, but the market clearing in the

equilibrium at the beginning of the investment period is vital. As by equilibrium considerations, the

price of each asset is determined since the market capitalization 30 is endogenously given. This is due

to the identity of the weight of asset k in the individual portfolio of every single agent and thus the

market share of asset k in the MPF. Based on this equilibrium logic (see Appendix A.11 for details)

the vector of expected returns can be defined as

(µ−Rf1) =
(µM −Rf )

σ2
M

ΣwM (4.2)

29 See Appendix B.3 for a derivation of Expression 4.1.
30 Market capitalization refers to the value of an asset relatively to the value of the whole market: MC = Sknk∑K

k=1
Sknk

,

where Sk is the asset price (per share) and nk is the number of shares outstanding of asset k.
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where ΣwM is the matrix product of the covariance matrix Σ and the vector of MPFweights,

resulting in a vector of n covariances of the single assets with the market portfolio in the n asset

case.31 Equation 4.2 marks the link between the CAPM and the BLM, it is referred to in the following

subsection.

In addition to making rather strong assumptions, the validity of the CAPM has been subject

to criticism since the early years of its existence. The Fama-French framework (Fama and French,

1992) and its numerous variations agree in principle that the asset return is contingent on market

movements, yet it is claimed that other factors as the Book-to-Market ratio and alike may explain

asset returns as well (see Appendix A.1). A famous critical appraisal of the CAPM is given in Roll

(1977), where it is proven that the validity of the linear relationship between β and the return is

not empirically testable unless the real market portfolio (including every single asset in the whole

asset universe) is known, which is very unlikely to be the case. On the other side, the CAPM is still

widely referred to in academia as well as in practice and there is also a vast literature attesting the

theory to be alive and well (e.g. Jagannathan et al. (1993)).

4.1.2 General Overview of the BLM

Despite the MPT being a cornerstone in financial theory and convincing in its simplicity, it exhibits

drawbacks in practical implementation. Already early critical publications (e.g. Michaud (1989))

detected the Markowitz portfolio optimization method to provide financially meaningless optimal

portfolios. So called corner solutions, where out of the asset universe only very few assets are held in

the optimal portfolio, effectuate sincere diversification insufficiency. Also, Michaud (1989) criticizes

the sensitivity of MV optimization causing the optimizer to magnify small estimation errors. Mainly

based on these flaws, in the early 1990s Fischer Black and Robert Litterman aimed to develop a

framework that would adopt the principles of the MPT and the CAPM with the goal to make the

standard optimizer better behaved (Litterman, 2004). In fact, the model is a reformulation of the

investor’s decision problem, that may be laid out in a frame of Bayesian logic. At the initial position

there are estimates of expected asset returns as implied by the market capitalization. This is based

on CAPM equilibrium considerations as a part of the prior distribution or simply the Bayesian prior.

31 Note, that it is straight forward to link Equation 4.2 to the β argumentation, see also Appendix A.11.
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In a second stage the investor may define views, that are statements on the performance, thus the

expected returns and also return differentials among the single assets being held in the portfolio.

Moreover, these views can be attributed with degrees of uncertainty. Views and uncertainty together

lead to the conditional distribution. The blending of these view-inputs with the prior results in a

posterior distribution, which serves then as input in a common MV optimizer. For an overview of the

inputs and distributions see Figure 4.1. Obviously, in addition to the assumptions being inherently

made by reference to the CAPM and the MPT, the premise that an investor is able to outperform

the market with private information or skills requires the assumption of a semi-strong form of market

efficiency (Cheung, 2010). Moreover, it is assumed that returns are normally distributed (as in the

standard MPT) and the distribution of the prior as well as the conditional distribution are known.

There is an extensive body of literature dedicated to the BLM. As Fischer Black and Bob Lit-

terman were rather brief concerning the explanation of their model and a detailed discussion of re-

spective assumptions in Black and Litterman (1992), there were several follow-up papers of in-depth

analysis and clarification of the model, e.g. He and Litterman (2002), Satchell and Scowcroft (2000)

or Christodoulakis (2002). The latter provides important insights to the model from a Bayesian

perspective. Bevan and Winkelmann (1998) focus empirically on the practicability of the model

and deem it appropriate to incorporate a portfolio manager’s views. Moreover, there are numerous

publications that modify the original model in some way, be it in terms of relaxing assumptions as in

Meucci (2005), or Cheung (2013) incorporating additional risk factors, or Harris et al. (2016) with a

time-varying, dynamic implementation of the model. To date, in an ESG context, only Brandstetter

and Lehner (2015) implement the BLM in repurposing the view feature as described in Section 3.9.

In Walters (2014) a comprehensive synopsis about the principles, proofs and insights to the BLM is

given along with a broad literature review.

The above mentioned reverse optimization, thus the extraction of return estimates as implied by

the market, is the conceptual core of the BLM. Reverse in this case refers to the common optim-

ization process known from MPT, where return estimates as inputs result in the optimal portfolio

weights. This relation is reversed in the BLM. From Expression 4.2 of the above section (see also

Appendix A.11), the equilibrium returns as generated by reverse optimization deduced from the
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Market View - Prior Distribution Investor's View - Conditional Distribution

Market-Cap.
Weights

Covariance
Matrix

Risk Aversion Views View
Uncertainty

weq Σ δ = µM−Rf

σ
2

M
Q Ω

Implied Equilibrium Return Vector
Π = δΣweq

Prior Distribution Conditional Distribution

µ ∼ N(Π; τΣ) Pµ ∼ N(Q;Ω)

Posterior Distribution

µBL ∼ N
(

[(τΣ)−1 + P 0
Ω

−1P ]−1[(τΣ)−1
Π+ P 0

Ω
−1Q]; [(τΣ)−1 + P 0

Ω
−1P ]−1

)

Figure 4.1 – This illustration shows an overview of the inputs and distributions of the BLM. The prior return
distribution on the left hand side reflects the market view. It originates from the reverse optimization, deducing
implied equilibrium returns from the market capitalization weights as described above. As another input, the
covariance matrix Σ and the risk aversion parameter are estimated, market weights are observed. On the right
hand side the incorporation of the investor’s view is pictured. Defining the view vector Q and the view uncertainty
Ω determines the conditional distribution. Blending both distributions results in the BLM-distribution that is
then used as input to a normal MV optimizer. (Source: own figure based on Idzorek (2002))
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CAPM equilibrium read as

(µ−Rf1) =
(µM −Rf )

σ2
M

ΣwM . (4.3)

In the quasi canonical notation prevalent in the BLM literature this is translated into

Π = δΣweq (4.4)

where in the N asset case, Π = µ−Rf1 is a (N × 1) vector of equilibrium risk premia, δ =
(µM−Rf )

σ2
M

is a scalar and treated as the market average risk aversion parameter, Σ is the (N ×N) covariance

matrix and weq is the (N × 1) vector of equilibrium weights given by the market capitalization at

the beginning of the period.

The fact that the notation deviates from the one known from CAPM or MPT stems from the

conceptional difference of how the expected returns are modeled. In the reference model expected

returns r are assumed to be normally distributed:

r ∼ N(µ,Σ) (4.5)

where µ is the mean and Σ the variance. In the canonical BLM the unknown µ itself is defined as

random variable being normally distributed around the estimate of the mean Π and its variance ΣΠ:

µ ∼ N(Π,ΣΠ), (4.6)

This is equivalent to state that µ = Π+ε, where ε is the deviation of the estimate from the true return

and is normally distributed, ε ∼ N(0,ΣΠ). If additionally it is assumed that ε is uncorrelated with

µ, and Σr is defined as the variance of returns about the estimate Π, it must hold that Σr = Σ + ΣΠ.

Hence, if the estimate gets worse, ΣΠ increases and therefore Σr alike (Walters, 2014). Thus, the

canonical BLM models expected return as

r ∼ N(Π,Σr). (4.7)

Note that the covariance matrix is assumed to be known from the equilibrium conception. In practice,

however, it is usually estimated from historical return data (Walters, 2014). Black and Litterman

make the assumption that the prior distribution covariance structure is proportional to the covariance

of returns. That is, referring to expression 4.6, ΣΠ is equal to τΣ, which turns the distribution of

prior returns of expression 4.7 into r ∼ N(Π, (1 + τ)Σ). The factor τ is discussed controversially and

set differently in different publications. It reaches in literature from close to zero up to one. Some
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model variations even forgo the use of this parameter. Conceptually, τ carries information about the

uncertainty of the investors in their prior estimates of expected returns, i.e. the returns deducted

from the CAPM equilibrium (Walters et al., 2013). It is reasoned in Walters et al. (2013) that if the

canonical model mentioned above is applied, thus µ is considered a random variable, the factor τ

must be defined and calibrated. Yet, since it is a measure for the confidence in the prior estimates, τ

remains subjective. Often it is considered in relation to the sample size and τ is set to the maximum

likelihood estimator 1
T with T being the number of periods used to sample the covariance matrix.

This logic treats Π as if it were the result of a regression causing the variance of the estimate Π to be

inversely proportional to the sample size T . A very intuitive approach to conceptualize τ is to install

it as determinant of confidence intervals for µ. Such a confidence interval could be formally expressed

as µ ∈ (µ ± z
√
τσ2), with z being a standardized factor determining the confidence interval, given

a normal distribution. Following this argumentation it is obvious that choosing τ too high returns

imprecise statements about the estimate (Walters, 2014). 32

4.1.3 Definition of Views

The expected return vector Π and the covariance matrix Σ being the main determinants of the prior

distribution, are the minimal inputs required for a typical MV optimizer. Yet, one of the main

features of the BLM is the formulation of the additional view inputs. If no views are defined and

all other model components remain unchanged, by construction the MV optimization process results

in weights proportional to the market portfolio.33 In the standard BLM views are defined either

in absolute statements about the expected return of a single asset or formulated relative to other

assets. The second formulation is more common in practice (Idzorek, 2002). A minimal example

of how views are expressed in the BLM consider the following K = 3 views in an asset universe of

N = 4 titles, A,B,C,D. An investor is assumed to have the following three views: (i) the expected

return of asset B is 3% (absolute view); (ii) asset C is going to outperform asset D by 2.5% in the

32 For numeric examples see Walters et al. (2013) or Zuber (2012).
33 In fact, it is - not as stated in some publications - not exactly the market portfolio as known from the CAPM; this

depends also on the factor τ that specifies the view uncertainty being discussed below in this section. Since the
covariance matrix Σ from Expression 4.4 is assumed to be (1 + τ)Σ due to uncertainty about the estimates, the
efficient frontier can be thought of being shifted to the right. Or alternatively the no-view investor invests 1

1+τ

into the market portfolio and τ
1+τ

into the risk free asset (see Walters (2014) for further explanations.)
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next period (relative view); (iii) an equally weighted portfolio of assets A and B will outperform

and equally weighted portfolio of assets C and D by 2%. In the black litterman model this view is

represented by defining the (K ×N) link matrix P and the (K × 1) view vector Q:

P =



A B C D

0 1 0 0

0 0 1 −1

0.5 0.5 −0.5 −0.5

, Q =


0.03

0.025

0.02

 (4.8)

These exemplary chosen views reveal a set of rules applied when defining views: for relative views

the positive and negative weights must sum to 1 and −1 respectively, absolute views are attributed

a weight of 1. There are also approaches imposing more restrictions on the weights defined in P , e.g.

Idzorek (2002) or He and Litterman (2002) define weights in relation to the market capitalization

of the involved titles. Intuitively, the relation between P and Q can be described as the potentially

underdetermined system of equations Pµ ≈ Q, with µ as the unknown (N × 1) vector of expected

returns (the approximate equality origins from the involved uncertainty). This system of equations

imposes restrictions on the posterior BLM return vector (see also Figure 4.1). Defining views this

way is rather flexible, even conflicting views are technically feasible. The mentioned uncertainty is

another component determined by the investor and completes the view input. To effectuate a strict

equality, the relation between P and Q may be expressed by Pµ = Q+εv, with εv being the normally

distributed error term εv ∼ N(0,Ω) that is assumed to be uncorrelated with the ε terms as in the de-

viations of Π from µ mentioned above. This makes Pµ also normally distributed, i.e. Pµ ∼ N(Q,Ω).

As views are assumed to be independent and uncorrelated, Ω is per definition a (K×K) matrix with

off-diagonal elements equal to zero and the diagonal elements ωkk for k = (1, . . . ,K) non-zero if a

view is expressed, zero otherwise. Analogously to the τ factor, there are different ways to quantify

Ω, representing the investor’s uncertainty about the views. Similar to the interpretation of τ , it

may be useful to treat Ω as determinant of confidence intervals (Mankert, 2006). For example if an

investor expresses the kth view that asset A will outperform asset B by 6%, and the confidence is

set to 95%, this projection falls within an interval of [5%, 7%], the corresponding ωkk would be set to

(0.5%)2. This stems from the fact that the 95% interval from the normal distribution is defined by
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approximately ±2σ, thus in the chosen example σ = 0.5%. It is a common approach to set the view

uncertainty matrix proportional to the prior covariance matrix (He and Litterman, 2002; Meucci,

2010), that is

Ω = diag(P (τΣ)P ′) (4.9)

where diag is an operator setting off-diagonal elements a square matrix equal to zero. If Ω is defined

this way, the uncertainty about the prior and the one about views are equivalent. There are some

other ways to specify this model component, a thorough review of most approaches is given in Walters

(2014).

4.1.4 Blending the Market Portfolio with Investor Views

There are different ways of combining the equilibrium with the investor’s views within the BLM

framework. This thesis follows the Bayesian approach. Consequently and according to Bayesian

statistics, the notion of probability is understood as a degree of belief that is updated once new

information is obtained. From a Bayesian perspective and applying probability density functions

(PDF), the posterior probability can be stated as follows:

pdf(µ | Π) =
pdf(Π | µ)× pdf(µ)

pdf(Π)
(4.10)

where pdf(µ | Π) is the PDF of the posterior probability distribution, i.e. the updated probability

of µ given the observed market equilibrium returns Π, pdf(Π | µ) is the PDF of the conditional

probability distribution of Π given µ, pdf(µ) and pdf(Π) are the PDFs of the unconditional probability

distributions of µ and Π. Assuming normally distributed returns, Expression 4.10 is the starting point

to deduce the posterior distribution that is multivariate normal and specified by the mean

µp = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1Π + P ′Ω−1Q] (4.11)

and the covariance matrix

ΣP = [(τΣ)−1 + P ′Ω−1P ]−1 (4.12)

which defines the posterior distribution of the BLM (compare also Figure 4.1) as:

µBL ∼ N
(
[(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1Π + P ′Ω−1Q], [(τΣ)−1 + P ′Ω−1P ]−1

)
. (4.13)

This expression is sometimes referred to as the Black Litterman master formula. A thorough and
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commented derivation thereof is given in Appenix B.4.

The covariance matrix ΣP might be mistaken to describe the variance of the returns, yet ΣP

quantifies the variance of the posterior mean estimate about the actual mean (Walters, 2014). Fol-

lowing He and Litterman (2002) and Walters (2014), it is not consistent to optimize a portfolio based

on ΣP only, rather it is required to add ΣP , representing uncertainty about the estimates, to the

variance from the distribution about the return estimates Σ. That is, the input covariance matrix

to the MV optimization process becomes

Σ = ΣP + Σ (4.14)

which after substituting the posterior variance leads to

Σ = [(τΣ)−1 + P ′Ω−1P ]−1 + Σ. (4.15)

Equation 4.15 clarifies that in the absence of views, Σ becomes (1 + τ)Σ, hence assuming τ > 0, the

variance of the estimated returns will be greater than the one of the prior distribution.

Assuming that the investor defines a view on a subset of assets, the effect of the posterior estimate

of the variance Σ̄ is intuitive. Covariance entries with low variances, that is with a higher degree of

precision of the estimated mean, will be favored as compared to such with high variances and the

portfolio weights will be tilt accordingly.

Analyzing the components in Expression 4.11 it is obvious that µP is a weighted average of the

expected market returns and the ones coming from the investor’s views. The left limb of the formula,

[(τΣ)−1 + P ′Ω−1P ]−1, acts as a normalizing component. The intuition behind this becomes evident

when τΣ and Ω are considered as measures of uncertainty, which turns their respective inverse into

a quantification of confidence in the expected returns (Cheung, 2010).

Having defined µP and Σ̄, the resulting maximization problem is denoted as

arg max
w

U(µP , Σ̄) = w′µP −
δ

2
w′Σ̄w (4.16)

with δ being the average risk parameter of the market. The maximization of this quadratic utility

function leads to the first order condition µP = δΣ̄w∗ or accordingly to

w∗ =
1

δ
Σ̄−1µP (4.17)

with w∗ being the optimal portfolio weights. When no views are defined (Σ̄ = (1 + τ)Σ), it can now
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easily be shown, that since the BLM investor is uncertain about the CAPM equilibrium weights, she

invests in a fraction of the market portfolio (He and Litterman, 2002), or formally:

w∗

1 + τ
=

1

δ
Σ−1µP . (4.18)

This concludes the basic ingredients of the BLM. In the next section the incorporation of ESG based

on the BLM is elaborated.

4.2 Modification of the BLM towards Inclusion of ESG Measures

The approaches towards quantitative inclusion of ESG considerations into portfolio management

portrayed thus far in Chapter 3 tend to exhibit an increased level of complexity as compared to the

investment process of a typical MV orientated investor and hence might forfeit practicability and

attractiveness to a certain degree. The BLM based method proposed in this section aims at overcom-

ing this gap. The method accounts for practicability in featuring the following characteristics with

the purpose to overcome some of the barriers to incorporating ESG criteria in mainly institutional

portfolio management:

(i) Allowing for benchmark orientation.

(ii) Remaining in the two dimensional MV criterion space to overcome the concerns about fiduciary

duty.

(iii) Possibility of moderate weight shifting according to ESG criteria.

(iv) Possibility to modify / customize ESG incorporation in intensity and nature.

(v) Maintaining portfolio diversification while accounting for ESG criteria.

(vi) Linking a rewarding/penalizing functionality to ESG scores, such that resulting portfolios per-

form better than (or at least as good as) the benchmark in terms of ESG.

(vii) Maintaining the capability of the BLM for the informed investor to express views.

(viii) Maintaining portfolio weight stability in a multiperiod rebalancing procedure.

The core idea of the proposed method is to impose a structure on the covariance matrix by

means of the modification of the variance terms. This modified covariance matrix is then used
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as input parameter in a conventional MV-optimization process.34 The covariance matrix, just like

the expected returns, is an estimate and in the BLM literature it is mostly based on historical

sample covariance matrices.35 The rationale of the developed method lies in the assumption of ESG

measures to add informational value to the model input variance reflecting idiosyncratic risk of the

single assets in the model. That is, if ESG factors are assumed to bare predictive information about a

company’s risk, it is reasonable to include this information in forming the expectation about portfolio

variance. Here, the assumption of the CAPM of non-systematic risk not being compensated for as it

is diversifiable, is essentially relaxed when applying this method. This can be rationalized if markets

are assumed to be not fully efficient (see e.g. Dumas et al. (2015)). Also, if the number of titles in

the portfolio is limited, as for example it is the case in the empirical test of the method in Chapter 5,

it is reasonable to modify variance terms. Formally, this can be illustrated in the portfolio variance

expression for an equally weighted portfolio derived in Appendix A.3:

σ2
PF =

1

n
Σ̃2 +

n− 1

n
σ̃i,j (4.19)

with σ̃2 and σ̃i,j being the average portfolio variance and covariance. This illustrative expression

of the portfolio variance shows the diversification effect, as n tends to infinity the variance terms

converge towards zero and the covariance terms towards the average covariance. However, for nu-

merous indices n is in a range where single variances matter in terms of contribution to the portfolio

variance. Moreover, the majority of indices allow for differences in portfolio weights, such that the

variances of higher weighted titles potentially contribute quite considerably to the portfolio variance.

There are two main elements of covariance matrix modification as compared to the standard BLM:

(i) A shrinkage method proposed by Ledoit and Wolf (2003) to mitigate the effects of estimation errors

linked to the use of sample covariance matrices based on historical returns. This modification lowers

extreme values of the covariance matrix in a statistically consistent way, yet is not directly linked

to the incorporation of ESG factors. The shrinkage precedes the modification of the variances, i.e.

the shrunk covariance matrix replaces the sample covariance matrix and is an input to generate the

posterior BLM covariance matrix Σ.36 A short description of the principle of the applied shrinking

34 A similar method was developed in Zuber (2012), yet in the context of behavioral finance, in particular considering
the Prospect Theory (Kahneman and Tversky, 1979).

35 The application of historical sample assures the covariance matrices to be positive definite (see also Walters (2014).
36 This is different from Zuber (2012), where the variance modification and shrinking part are combined in one step.
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method is given in Appendix A.12. (ii) The modification of the variance terms of Σ to alter the

resulting portfolio weights according to some ESG score, which is shown in the next paragraphs.

For a thorough understanding of how the modification of variances works, it is useful to reconsider

Expression 4.17 from the above section, determining the resulting (unconstrained) optimal weights

in the BLM process:

w∗ =
1

δ
Σ
−1
µP . (4.20)

Thus, the weight vector is mainly determined by the expected return vector µP , the average risk

aversion coefficient from the market δ, and the inverse of the posterior covariance matrix Σ. The

equation reveals that assets with large expected returns and a low contribution to the portfolio

variance tend to be overweighted and vice versa. In a standard MV setup, concerning the sensitivity

of the portfolio weights to changes of the inputs, adjustments of the expected returns weigh more than

adjustments in the covariance matrix, and changes to the variance terms weigh more than changes to

the covariance terms (Best and Grauer, 1991; Fabozzi et al., 2007).37 Yet, by construction the BLM

mitigates this sensitivity and so does also the application of covariance shrinking mentioned above.

These preconditions allow for moderate portfolio weight shifting caused by variation of the inputs.

The concept of modeling variance terms is already applied within the BLM framework, the diagonal

matrix Ω expresses uncertainty about the investors views modifying the variance terms coming from

return covariance estimation accordingly. While this procedure only alters variances of assets that

actually the investor defines a view for, the proposed method (henceforth referred to as Adjusted

Variance Method (AVM)) virtually tackles the variance terms of every asset.

Formally, the modified covariance matrix Γ with the entries γij for i, j = 1, ..., N can be expressed

as follows

Γ = ΣS ◦A◦κ (4.21)

with ΣS as the posterior BLM covariance matrix based on the shrunk sample covariance matrix, the

entries of which are σSij for i, j = 1, ..., N , and A as the matrix of adjustment-entries aii (further

specification of these factors is given below) and the off-diagonal entries aij = 1, where i 6= j. The

37 According to Fabozzi et al. (2007) as a rule of thumb changes in returns weigh ten times more than changes in the
covariance matrix, and changes in the variance terms thereof weigh twice as much as changes in covariance terms.
This holds for plain MV optimization and the elasticity is also a function of the number of titles in the portfolio
and the risk aversion coefficient.
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latter assures that the covariances remain unchanged. The exponent κ ≥ 0 quantifies the adjustable

intensity of ESG incorporation; when κ ∈ [0, 1] the ESG inclusion reaches from no variance modifica-

tion at all (κ = 0) to a straight one-to-one effect (κ = 1), if κ > 1 the effect gets more pronounced.38

The ◦-operator represents a Hadamard operation, thus an element-wise matrix operation for multi-

plication as well as exponentiation. Consequently, single entries of Γ are expressed as γij = σSija
κ
ij .

Algebraically, matrix A may be generated as A = J − I + (diag(a)) where J is a N ×N matrix of

ones, I is the N ×N identity matrix, diag(a) is a diagonalized 1×N vector of adjustment factors.

Written in matrix notation this becomes:



a11 1 . . . 1

1 a22 . . . 1

...
...

. . .
...

1 1 . . . ann


=



1 1 . . . 1

1 1 . . . 1

...
...

. . .
...

1 1 . . . 1


−



1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


+



a11 0 . . . 0

0 a22 . . . 0

...
...

. . .
...

0 0 . . . ann


(4.22)

Accordingly Expression 4.21 can be expressed as



a11 ∗ σS11 σS12 . . . σS1n

σS21 a22 ∗ σS22 . . . σS2n

...
...

. . .
...

σSn1 . . . . . . ann ∗ σSnn


=



σS11 σS12 . . . σS1n

σS21 σS22 . . . σS2n

...
...

. . .
...

σSn1 . . . . . . σSnn


◦



a11 1 . . . 1

1 a22 . . . 1

...
...

. . .
...

1 1 . . . ann



◦κ

To compute the final portfolio weights, the resulting covariance matrix Γ together with the

posterior expected return vector µP are used as inputs to a common MV optimizer under no short-

selling-constraints and the full-allocation constraint (weights required to sum to unity). When no

constraints are applied, the closed form solution can be expressed formally as

w∗ =
1

δ
Γ−1µP

=
1

δ
(ΣS ◦A◦κ)−1µP .

(4.23)

In the empirical chapter below, constraints are active and a computational non-linear program-

ming solver is applied.

38 Yet, to get meaningful results κ should be raised only moderately, see also Chapter 5.
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To ensure that the modifying elements of the A matrix relate to ESG, there are potentially

numerous ways to specify aii entries and there is not a single right method. Subsequently, two main

approaches are suggested.

In a direct approach, the variance terms of the posterior covariance matrix ΣS are assumed

to neglect completely the risk dimension carried by ESG measures. That is, to account for ESG

considerations the variance terms are multiplied by aii ≥ 1. When ESG scores ∈ [0, 1] are applied,

as it is the case in the empirical implementation of the method in Chapter 5, with 0 being the lowest

(worst) and 1 highest (best) ESG score, one way to reflect the risk information is to define

aii = 2− ESGii (4.24)

where ESGii is the ESG score of asset i. That is, a hypothetically perfect asset i in terms of

ESG considerations is attributed an ESG score of 1, thus by the fact that aii = 2 − 1 = 1, the

corresponding variance term is not penalized. However, most assets are not considered as perfect

ESG wise, thus the adjustment factor aii will take values greater than one for virtually any asset;

it will be close to 1 for the best ESG companies and close to 2 for poor ESG performers. With a

maximal penalization of 2 and the intensity κ ∈ [0, 1] moderate weight shifting is favored. According

to this logic, any variance-term is penalized, yet some more than others, hence the portfolio weights

of good ESG companies tend to increase and vice versa. It is important to notice that this holds

true as a tendency and not as an absolute statement, more on that issue below in this section.

An alternative indirect approach that is suggested to quantify the diagonal entries of the adjust-

ment matrix A is an internal benchmarking approach according to which the weights are modified

due to the ESG score relative to the other portfolio members’ scores. Obvious choices for the bench-

mark are the sample-mean or the median, both being representations for the center of covered ESG

data. Accordingly and with M being a generic variable for either the arithmetic sample mean or the

median describing the sample of the portfolio members’ ESG scores at time t, the diagonal A entries

are expressed as39

aii =
M

ESGii
, for ESGii 6= 0. (4.25)

39 Here, the assumption of ESGii 6= 0 is formally necessary and practically reasonable.
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Hence, aii = 1 if the ESG score of title i is exactly equal to M , such that the variance is neither

penalized nor rewarded; aii < 1 if ESGii > M . That is, if in terms of ESG a title performs superior

as compared to the mean or median score of the portfolio, the variance term of asset i is lowered

(rewarded), if it is inferior it is penalized (raised). As for the direct method, this shifts portfolio

weights accordingly. While the mean is potentially prone to outliers, the median is likely to produce

more robust adjustments, which is caused by dividing the sample of assets in titles that are rewarded

and titles that are penalized more or less in equal parts (depending on whether N is even or odd).

Generally, as the adjustment factors of the indirect approach are allowed to exceed a doubling, the

weight shifting of the indirect approaches are likely to be more distinct as compared to the direct

approach.

In the above paragraphs it is mentioned that superior ESG scores tend to lead to increased

portfolio weights. However this cannot be taken as a rule for neither of the approaches. This reasoning

origins from the fact that there are other determinants of portfolio weights like the covariance terms,

the magnitude of the variances and covariances, the sign of the covariances, the expected returns

and the dispersion of the adjustment terms aii. Also, there are typically numerous titles in the

portfolio that contribute to the portfolio variance, the weights of which are altered, too, due to

their ESG scores. This implies that an asset with good ESG scores not necessarily gains portfolio

weight as compared to the non ESG consideration case or even as compared to a title with a -

considered in isolation - inferior ESG score. Thus, on the single asset level it is even possible that

a security with a lower ESG score gains weight in the resulting portfolio, while the higher ESG

score title weight decreases. To follow this logic it is useful to think of a hypothetical portfolio of

two assets being identical in their specifications except from their variance terms, say asset 1 has a

variance of σ11 = 0.05, asset 2 one of σ22 = 0.01. Clearly, a MV optimization attributes a weight

of 1.0 to asset 2 (as also their covariance terms are equal by definition). Now, assume asset 1 is

attributed the maximal ESG score of 1.0 and asset 2 the minimal score of 0.0. In fact, applying the

direct method leads to the modified variance terms γ11 = a11 × σ11 = (2 − 1) × 0.05 = 0.05 and

γ22 = a22 × σ22 = (2 − 0) × 0.01 = 0.02. As the penalization factor in this case is too small, still

the resulting portfolio will only contain asset 2, despite it exhibits a maximally inferior ESG score as

compared to asset 1. Contrary to this, both indirect methods (assuming an ESG score converging to
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zero for asset 2) lead to the exact opposite result, since the rewarding/penalizing measures are now

a11 = M
ESG1

≈ 0.5 and a22 = M
ESG2

≈ ∞, thus the portfolio will only contain asset 1. This thought

experiment is illustrative and is supposed to clarify the effects of the methods. However, ceteris

paribus the weight of asset i exhibiting an increased ESG score will at least be equal or greater

compared to the original portfolio. This reasoning is founded in the MV optimization that aims

at maximizing the (ex ante) Sharpe Ratio of the portfolio. The contribution to the latter coming

from asset i is more favorable as compared to the original portfolio since its variance is decreased

by the application of the method. The same reasoning of a modified contribution to the portfolio

Sharpe Ratio for all portfolio members according to their relative ESG performance ensures that the

overall portfolio ESG score will increase (or at least remain the same) as compared to the non ESG

consideration case. The most intuitive way to consider the incorporation of ESG scores is to deem

them an additional criterion altering the risk-return characteristics within the portfolio optimization

process.

In general, neither of the approaches disrupts the positive definiteness of the covariance matrix,

since the only altered values are variances, that are greater than zero by definition (given risky assets)

and also the entries of the A-matrix are strictly positive in any case. Moreover, according to the

Schur Product Theorem the Hadamard Product of two positive definite matrices is again positive

definite (Schur, 1911).

Furthermore, both approaches that are discussed may be enriched with additional constraints

that are commonly used in portfolio optimization, as e.g. weight limits, but also a minimal ESG

portfolio score constraint. Moreover, there may be different approaches to restructure the covariance

matrix, yet the present thesis focuses on providing a basic implementation of the model.
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Chapter 5
Empirical Application

In this chapter the AVM with its different approaches is implemented with altering parameter values

and the resulting portfolios are analyzed regarding the effects of ESG inclusion to portfolio con-

struction and out-of-sample performance. The description of used data is given in Section 5.1, the

empirical analysis in Section 5.2.

5.1 Data Description

The market in consideration is the Swiss stock market being represented by the Swiss Market Index

(SMI), which is a market capitalization weighted price index of the 20 most capitalized and liquid

stocks of the Swiss Performance Index (SPI) (SIX, 2016).40 The index constituents used for the

empirical analysis correspond to the actual constituents by April 2016 excluding Actelion and Bank

Julius Baer due to incomplete data; this diminished SMI will be referred to as the SMI(-). The

complete list and the corresponding weights as of December 2014 of the 18 SMI(-) constituents is

given in Table D.2 in Appendix D. The SMI as a Swiss bluechip index is suitable for testing the

method due to its modest number of titles and also the heterogeneity of weights with few index

heavyweights and some less represented stocks. Also, bluechip titles are more likely to be attributed

ESG scores from data providers. The time-frame in scope is January 31, 2002 up to December 31,

2014, hence 156 monthly price observations in (Swiss Francs) or 155 monthly return observations for

40 Data source for asset prices is Thomson Reuters Datastream, a subscription service portal.
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each of the assets. It is important to note that the financial crisis 2007-2008 is included in the period

of consideration. Although performance measures as to be found in Section 5.2 can be calculated

for a post financial crisis period, the latter still influences the results via the estimated covariance

matrices.41 The single period net return of asset i for period t is calculated arithmetically, thus

ri,t =
Si,t−Si,t−1

Si,t−1
with Si being the price of stock i. The riskfree rate is approximated by monthly

observations of the 3-month LIBOR (London Interbank Offered Rate), data was retrieved from the

Swiss National Bank (SNB, 2016).

As for the exogenous BLM paramaters, the average market risk aversion parameter was set to

δ = 2.75, which is based on a longterm empirical average and corresponding to the BLM literature

consensus with δ values between 2 and 3. The uncertainty factor about the prior estimate τ is

set to 0.05 in accordance with He and Litterman (2002). Moreover, the view uncertainty matrix is

computed as Ω = diag(P (τΣS)P ′), see also Section 4.1.

ESG scores were retrieved from the Thomson Reuters Asset4 database featuring the categories

Environmental, Social, Corporate Governance and Economic, spanning 500 datapoints in total to

cover more than 180 key performance indicators for ESG. For the provider’s description of the

categories see Table D.3 in Appendix D. The original scores’ range lies within an interval [0, 100], for

the use in the AVM it was scaled to [0, 1]. The titles of the SMI perform relatively well as measured

by this score; the majority of the securities are centered in the top quintile42 in terms of overall ESG

score, see the boxplots in Appendix C.5. Four remarks on the use of these measures: (i) ESG scores

are highly condensed measures and it is arguable whether they do justice to a fair representation of

a company’s ESG performance. (ii) For the sake of the empirical analysis the equally weighted score

over all four categories given by the database is applied.43 (iii) The applied ESG scores are only

updated on a yearly basis. For the practical implementation of the model, it might make sense to

update ESG scores on a higher frequency level, e.g. after the occurrence of new relevant information.

(iv) ESG scores are compositions of publicly available data (e.g. sustainability reports or information

on the corporate websites) and may be biased.

41 Correlations during crisis are usually stronger than in average times see e.g. Sandoval and Franca (2012).
42 Quintile refers to the ESG scores of the worldwide asset sample population as covered by the Asset4 database.
43 A quick check revealed that the term equally weighted may be misleading, since the weights are not quite equal.

Yet, they are rather balanced.
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5.2 Empirical Analysis

As the main goal of the proposed method is to account for ESG scores while still focusing on a

benchmark index, the effects of the method to portfolio weights is studied in the first place. Based

on the shrunk sample covariance matrix that is computed on the basis of single asset returns from the

preceding five years and with no investor views defined, optimal weights according to the different

approaches proposed in Section 4.2 are generated. The exponent κ as the investor defined measure

of degree of ESG incorporation is set to 1 when nothing else is indicated. A static observation of the

corresponding weights as of January 2007 is given in Table 5.1.

ESG w∗
BLM w∗

D ∆D aii w∗
I1 ∆I1 aii w∗

I2 ∆I2 aii

NES 0.9377 0.1632 0.1632 -0.0000 1.0623 0.1879 0.0248 0.8489 0.1767 0.0135 0.9482
NOV 0.8989 0.1674 0.1568 -0.0106 1.1011 0.1689 0.0014 0.8855 0.1633 -0.0041 0.9891
ROC 0.9282 0.1465 0.1444 -0.0021 1.0718 0.1649 0.0184 0.8576 0.1556 0.0090 0.9579
UBS 0.9421 0.1462 0.1460 -0.0001 1.0579 0.1848 0.0387 0.8449 0.1644 0.0182 0.9437
ABB 0.9542 0.0428 0.0425 -0.0003 1.0458 0.0532 0.0103 0.8342 0.0476 0.0048 0.9318
SYN 0.9268 0.0213 0.0292 0.0079 1.0732 0.0156 -0.0057 0.8589 0.0244 0.0031 0.9593
CS 0.8881 0.0952 0.0865 -0.0087 1.1119 0.1005 0.0054 0.8963 0.0929 -0.0022 1.0011

SRE 0.9441 0.0346 0.0410 0.0064 1.0559 0.0377 0.0032 0.8431 0.0406 0.0061 0.9417
RIC 0.8901 0.0323 0.0350 0.0027 1.1099 0.0265 -0.0058 0.8943 0.0323 -0.0000 0.9989
ZUR 0.6258 0.0432 0.0303 -0.0128 1.3742 0.0226 -0.0206 1.2720 0.0242 -0.0190 1.4207
LAF 0.9537 0.0278 0.0356 0.0078 1.0463 0.0120 -0.0158 0.8346 0.0273 -0.0005 0.9323
SCM 0.6853 0.0235 0.0237 0.0002 1.3147 0.0139 -0.0096 1.1615 0.0187 -0.0048 1.2974
GIV 0.7627 0.0072 0.0106 0.0034 1.2373 0.0000 -0.0072 1.0437 0.0017 -0.0056 1.1657
SGS 0.4083 0.0095 0.0099 0.0004 1.5917 0.0021 -0.0074 1.9495 0.0045 -0.0050 2.1776
SLI 0.6475 0.0094 0.0089 -0.0006 1.3525 0.0017 -0.0078 1.2293 0.0052 -0.0042 1.3731

GEB 0.8250 0.0078 0.0118 0.0040 1.1750 0.0000 -0.0078 0.9648 0.0063 -0.0015 1.0777
ADE 0.8520 0.0134 0.0159 0.0024 1.1480 0.0075 -0.0060 0.9343 0.0126 -0.0008 1.0435
SWA 0.2575 0.0085 0.0086 0.0001 1.7425 0.0000 -0.0085 3.0913 0.0018 -0.0068 3.4528

ESGPF - 0.8891 0.8924 - - 0.9125 - - 0.9063 - -

Table 5.1 – This Table shows static observations of the effects after applying the AVM as of January
2007, the first three columns being the company names, ESG scores and market weights. The latter
corresponds to the no-view BLM portfolio. The columns to the right of the market weights are three
blocks of the type optimal weights according to the approach, w∗, differences to market weight, ∆, and the
corresponding A-matrix entries, aii. The subscript D stands for the direct method, I1 for the indirect
method with mean as location parameter, and I2 for the indirect method based on the distance to the
median. The entries of the last row correspond to the ESG scores of the according portfolios.

Focusing on the resulting optimal weights w∗D in table 5.1 generated by the direct version of the

AVM, it is apparent that the modified weights for most of the assets diverge from the market weights

rather moderately. As by construction the corresponding aii entries lie in the interval [1, 2], i.e. all

variances are penalized, yet to a different degree. As outlined in Section 4.2, it is not obvious to

assign a directly observable effect to the application of aii. This is due to the fact that the ESG score

is only one criterion besides the expected return and the variances and covariance-terms. Taking
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it into consideration, casually speaking, reshuffles the cards in terms of ex ante portfolio Sharpe

Ratio contribution as outlined in section 4.2. The most prominent weight shift in column ∆D is

a drop of 1.28% as compared to the market portfolio for Zurich Insurance (ZUR), which indeed

features one of the lowest ESG scores for the considered period. The highest weight increase due

to the application of the direct method can be observed for Syngenta (SYN) with 0.79%, and in

fact the company is attributed a rather high ESG score. Yet, Swatch (SWA) as the title with the

lowest ESG score exhibits virtually no portfolio weight shift at all. The reasons for this are (i) the

weight being a function of multiple factors; the contribution to the portfolio Sharpe Ratio is indeed

worsened, but not enough relatively to the other factors and titles to evoke a weight change (see

also the two asset portfolio reasoning in Section 4.2); (ii) in the sense of market portfolio tracking,

the most influential input remains the expected return vector, i.e. the range of deviation of the

market portfolio is limited (see also the sensitivity analysis below); (iii) the direct method produces

the most modest adjustment measures of all approaches. The overall effect however is positive as

indicated by the portfolio ESG score. The two blocks on the right hand side of Table 5.1 show the

weight shifting according to the indirect methods with respect to the ESG mean of the portfolio

(w∗I1) and the median (w∗I2). It is evident that the weight differentials as compared to the market

portfolio are more prominent than for the weights generated by the direct method. The tendency of

high ESG score titles gaining weight and low ones being penalized is more accentuated than after

the application of the direct method, such that e.g. for UBS the weight surplus amounts to 3.87%

and the weight drop for ZUR to 2.06% according to the mean relating approach (column ∆I1). The

deviation from the mean ESG score produces aii-entries that cause highest weight differentials as

compared to the other approaches. Accordingly, the overall ESG score of the portfolio is highest for

the mean related reward/penalization method. Three relatively poor ESG performers even drop out

of the portfolio. The cause for this effect is clarified by considering the reference score; the mean of

0.7960 for this period vs. the ESG median of 0.8891, favors the weight of the top ESG scorers most

by construction of the aii entries. This additional weight for the top ESG titles is shifted from the

low ESG performers. Yet, the difference between the effect of the mean and the median approach

depends on the data. In particular, values close to the limits of the interval move the mean towards

more extreme values. In general, the median method delivers more balanced results, which causes
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more moderate weight shifting, as it refers to the center of the data that is less prone to outliers.

As per construction the main determinants of the weights are the expected returns, which is the

reason for a certain stickiness to the benchmark weights. In this respect it is interesting to investigate

the sensitivity of the resulting weights with respect to ESG scores. To this end, complementing the

above analysis, the resulting portfolio weights for a heavy weight (NES) and a light weight (SWA)

title are plotted as a function of ESG scores (running from close to zero to one). The result is shown

in Figure 5.1.
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Figure 5.1 – This figure shows the weights of NES and SWA as functions of their ESG scores. The reference
situation is the static observation as shown in Table 5.1; mean and median consistently are adjusted according
to the change of the respective ESG score. The horizontal line in both cases corresponds to the weights in the
unaltered market portfolio. (Source: own figure)

Figure 5.1 clarifies the effects of the three approaches on the corresponding portfolio weights. The

direct method (D) has the property of being more balanced in the sense of limiting the deviation

from market weights most for index heavyweights like NES and linked to this not neglecting small

portfolio weight titles as SWA. This is opposed to the mean referring approach (I1) that penalizes the

weight of SWA as compared to the market even when its ESG score is maximal. In this case SWA is

crowded out by the positive weight shifts of the titles starting already with significant weights. The

median referring approach (I2) again is less extreme in its outcome. It is also interesting that the

penalization imposed by both indirect methods (I1 and I, 2) is able to force the weights to converge

to zero when ESG scores tend to the minimum.
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To conclude the part of the static empirical analysis, the functionality of defining BLM views

is tested, results are presented in Table 5.2. It is obvious that a relatively minor view differential

(UBS outperforms CS within a year by 2%) causes rather drastic weight changes. Yet, this is

in line with other applications of the BLM with similar BLM inputs to the model, see eg. the

implementation of He and Litterman (2002). However, the functionality of the view incorporation

alongside ESG corporation is maintained. This meets the expectations since views constitute only

another determinant of the weights and their incorporation is straightforward in the sense of the

BLM. As the scope of the present thesis is not the formulation of specific views, it is refrained from

further analysis in this direction.

ESG w∗BLM w∗D ∆D wV iewD ∆D,noV iew ∆D,BLM

NES 0.9377 0.1632 0.1632 -0.0000 0.1624 -0.0008 -0.0008
NOV 0.8989 0.1674 0.1568 -0.0106 0.1591 0.0022 -0.0084
ROC 0.9282 0.1465 0.1444 -0.0021 0.1420 -0.0024 -0.0045
UBS 0.9421 0.1462 0.1460 -0.0001 0.2603 0.1143 0.1141
ABB 0.9542 0.0428 0.0425 -0.0003 0.0404 -0.0021 -0.0024
SYN 0.9268 0.0213 0.0292 0.0079 0.0257 -0.0034 0.0044
CS 0.8881 0.0952 0.0865 -0.0087 0.0000 -0.0865 -0.0952

SRE 0.9441 0.0346 0.0410 0.0064 0.0363 -0.0047 0.0017
RIC 0.8901 0.0323 0.0350 0.0027 0.0336 -0.0014 0.0012
ZUR 0.6258 0.0432 0.0303 -0.0128 0.0286 -0.0017 -0.0146
LAF 0.9537 0.0278 0.0356 0.0078 0.0310 -0.0046 0.0032
SCM 0.6853 0.0235 0.0237 0.0002 0.0244 0.0007 0.0009
GIV 0.7627 0.0072 0.0106 0.0034 0.0087 -0.0019 0.0015
SGS 0.4083 0.0095 0.0099 0.0004 0.0085 -0.0015 -0.0010
SLI 0.6475 0.0094 0.0089 -0.0006 0.0067 -0.0022 -0.0027

GEB 0.8250 0.0078 0.0118 0.0040 0.0099 -0.0020 0.0021
ADE 0.8520 0.0134 0.0159 0.0024 0.0138 -0.0020 0.0004
SWA 0.2575 0.0085 0.0086 0.0001 0.0086 -0.0001 0.0000

Table 5.2 – This table shows the effect of an investor’s view stating that the UBS will outperform the CS
by 2% within a year, which translates input-wise into a monthly excess return of 1.02

1
12 −1 = 0.0017. This

view is represented in the Q-vector from the BLM and the corresponding P vector. The frist two blocks
of the table refer to Table 5.1 for the sake of comparison. The resulting weights after defining views are
shown in column wV iew

D . It can be observed that this leads to CS dropping out of the portfolio while UBS
gains 11%. The last two columns quantify the difference of the resulting view generated weights wV iew

D

to w∗
D (no view) and w∗

BLM (market) as of January 2007. The comparison of the weights show that the
weight changes to the titles excluded from the view are minimal, which indicates that the incorporation
of views besides the incorporation of ESG scores is functional.

For an out-of-sample analysis of the portfolios generated by the AVM a monthly rolling window of

five years for the covariance matrix and a monthly update of the remaining inputs from January 2007

to December 2014 is considered to compute the inputs in order to monthly rebalance the portfolio.
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The time series of monthly rebalancing is shown in Figure 5.2.
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Figure 5.2 – This figure shows the monthly rebalancing of the portfolios. The x-coordinate corresponds to the
number of months, the y-coordinate to the portfolio weights. The weights of the titles are stacked; every shade of
gray represents one asset. (Source: own figure)

Figure 5.2 demonstrates that the observations made in the static analysis above seem to be per-

sistent over time. That is, the weighting according to the direct AVM method is close to the weighting

of the market (BLM (no view)), the indirect approach referring to the ESG mean exhibits most devi-

ation from market weights and the median reference figures in between the two. Furthermore, Figure

5.2 depicts the difference in rebalancing to plain MV portfolio optimization, which is characterized

by unstable weightings, corner solutions and thus substantial diversification deficiencies.

Another interesting aspect when considering portfolio properties over the whole period of time

is the portfolio ESG score. As illustrated in Figure 5.3, the portfolios generated with the AVM

outperform their benchmark in terms of ESG scores. For the period in scope, the mean referring

indirect method beat the other methods, albeit the excess ESG score as compared to the median

approach was rather narrow for the year 2014. Generally, the scheme found from the inspection of

the weightings concerning the degree of departure from the benchmark is mirrored on the portfolio

ESG score level. Moreover, Figure 5.3 also illustrates the yearly jumps in ESG scores, which due to

the SMI being an index with few heavy weighted assets, is mainly depending on the ESG scores of the

respective titles. However, these jumps are not a function of the different approaches, but contingent
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Figure 5.3 – This figure shows the monthly time series of portfolio ESG scores generated by the different
portfolio weighting schemes. (Source: own figure)

on the ESG data in use. Scores updated in a higher frequency would mitigate this phenomenon.

Furthermore, SMI members featuring considerable index weights happen to be attributed rather high

ESG scores (see e.g. Table 5.1). Apart from this fact potentially having its cause in the correlation of

firm size and ESG scores (see Section 2.4), it limits also the ESG score differentials of the generated

portfolios in magnitude. Further insight into the characteristics of the different portfolios is given in

Table 5.3, where different key performance measures are enlisted.

κ = 1 κ = 3 κ = 5

M D I1 I2 D I1 I2 D I1 I2

ESG 0.8973 0.9020 0.9126 0.9100 0.9085 0.9232 0.9193 0.9131 0.9320 0.9250
Ret 0.0111 0.0131 0.0063 0.0094 0.0158 0.0004 0.0077 0.0176 -0.0062 0.0059
SD 0.1291 0.1285 0.1283 0.1282 0.1281 0.1277 0.1270 0.1280 0.1408 0.1264
SR 0.0858 0.1016 0.0493 0.0730 0.1231 0.0033 0.0602 0.1377 -0.0441 0.0467
TE 0.0000 0.0042 0.0076 0.0049 0.0102 0.0219 0.0117 0.0148 0.0553 0.0188
IR 0.0000 0.4659 -0.6181 -0.3482 0.4548 -0.4821 -0.2890 0.4394 -0.3096 -0.2731
α 0.0000 0.0020 -0.0046 -0.0016 0.0048 -0.0103 -0.0032 0.0066 -0.0172 -0.0048

Table 5.3 – This table contains some key performance measures for the period of 2007 to 2014. M stands
for market, D for the direct and I for the indirect AVM approaches, where I1 refers to the mean and I, 2
to the median. The portfolios are calculated with different degrees of intensity of ESG incorporation, κ.
The performance measures beginning from the first row are: average portfolio ESG score, average excess
return over the riskfree rate, standard deviation of the returns, Sharpe Ratio, Tracking Error, Information
Ratio, Jensen’s alpha. Computational details for the different measures are given in Appendix A.13.

Table 5.3 confirms the positive effect of applying the AVM approaches on the average ESG score.

Furthermore, ESG scores increase as the intensity of incorporation represented by κ increases. Yet,

the portfolios lose their diversification property as κ increases, and the indirect approaches are more
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exposed to this effect than the direct one; e.g. with κ = 5 there are 18, 4 and 13 assets held in

D, I1 and I2 portfolios. In terms of standard deviations of excess returns, the AVM approaches

were able to lower this risk for low κ values, yet only the direct method D is able to outperform

the market portfolio in terms of risk adjusted returns as represented by the Sharpe Ratio. A similar

picture is given when comparing the Information Ratio (IR), which is the average excess return of

the portfolio in consideration per unit of volatility in excess return (see e.g. Goodwin (1998)) as

compared to the benchmark portfolio. The only approach that gained excess return per unit of

Tracking Error (TE), i.e. per unit of risk of deviating from the market, is the direct method D.

The other methods underperform in terms of risk adjusted returns relative to the market. This is

mirrored in Jensen’s alpha measure, that is also listed in Table 5.3, which is return generated above

the prediction of the model considering the sensitivity of portfolio return movements to market return

movements, β, as sole factor. Approach D generates a positive annualized alpha of 0.2% (κ = 1),

0.66%(κ = 5) respectively, while the indirect methods underperform. Yet, it is important to keep

in mind that measures like the IR or Jensen’s alpha in practice are supposed to measure a portfolio

manager’s ability to outperform the market. However, the portfolios as reported in this section are

not considered to be actively managed, but they are tilt towards the incorporation of ESG measures.

Accordingly, it is not a stated goal of the methods to outperform the market financially. The

passive investment style is also mirrored in the relatively low tracking error measures. Furthermore,

empirically, the return values and all related measures are rather low, which is also due to the chosen

period containing the global financial crisis 2007-2008. For comparison reasons, key performance

measures for a subsample period post financial crisis (2009-2014) is given in Table D.4 in Appendix

D. Moreover, the progression of the portfolios (without consideration of transaction or similar costs)

referring to an indexed starting point of 100 at the beginning of 2007 is depicted in Figure 5.4.

Thus, to draw a bottom line, according to the results of the empirical analysis it can be concluded

that the AVM fulfills the goals outlined in Section 4.2 and is potentially suitable to overcome imped-

iments to account for ESG criteria in an institutional investors context. All suggested approaches

achieve the goal of increased portfolio ESG scores while maintaining market orientation. Most mod-

erate weight shifting is achieved by applying the direct approach, which in consequence maintains

diversification at even higher levels of integration intensity κ. Also, the direct approach outperforms
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Figure 5.4 – This figure shows the monthly development of the indxed portfolio values generated by the different
portfolio weighting schemes as indicated in the legend. (Source: own figure)

the market as well as the indirect approaches financially in the considered period. Yet, to conclude

a systematic outperformance would be founded only on insufficient evidence and a more extensive

empirical analysis with different benchmarks and periods would be necessary. The indirect methods

achieve more pronounced weight shifting according to the assets’ ESG scores since the according

variance adjustment values cover a wider range of values. Although this statement does not hold in

general, it is very likely to hold in most real data situations.
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Chapter 6
Conclusion

There are good reasons to account for environmental, social, and governmental (ESG) criteria when

it comes to portfolio construction and management beyond the practice of sheer negative screen-

ing. That is, particularly considering quantitative ESG measures actively in portfolio building and

rebalancing. The present thesis investigates approaches suggesting practicable frameworks for this

purpose. As a matter of the nature of the problem, most of the proposed methods in the literature

are contributions in the realm of Mulitple Objective Optimization, which is an obvious way to tackle

the problem of investment decisions based on financial risk, financial return and additional non-

financial criteria as the ESG dimension. The majority of the analyzed methods share the principle of

generating a non-dominated set of solutions, which basically represents a set of potential portfolios

being Pareto efficient with respect to the different objectives. To determine the optimal portfolio(s),

most approaches require to define an investor’s preferences regarding the involved criteria. The in-

vestigated methods tackle the task of ESG incorporation either by splitting the process or the asset

universe, by focusing on utility functions, using additional constraints, by applying computational

concepts as Fuzzy Logic or by treating sustainable return similar to financial return. Most of the

examined methods refer to Markowitz. With a tradeoff system featuring more than two components,

such problems potentially reach a level of complexity that might discourage practitioners to engage

in the methods in scope. Also, there still seem to be different barriers particularly for institutional

investors, when it comes to implement approaches that quantitatively and permanently evaluate
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ESG within the portfolio management process. One of the major impediments is the perceived de-

tachment of the Modern Portfolio Theory paradigm and, linked to that, concerns about whether

fiduciary duty of institutional investors is still fulfilled when including ESG criteria quantitatively.

The method developed in this thesis is based on the Black Litterman Model and thus closely related

to the mean-variance investment philosophy. To account for quantitative inclusion of ESG criteria

a structure is imposed on the covariance matrix, which serves as input to a common mean-variance

optimizer. As a result, the portfolio weights are shifted accordingly. Two main approaches are sug-

gested to consider ESG scores within the proposed framework. On the one hand, the direct method:

based on the assumption that there is additional information concerning the risk of a company,

variance estimates are increased according to the deviation from a perfect ESG score. Thus, unless

there is an asset scoring the maximum ESG score, each variance entry of the covariance matrix is

penalized, yet to a different degree. On the other hand, the indirect method: the variance modifica-

tion of a single title is based on the deviation of the ESG score from the mean or the median of the

portfolio members’ ESG scores. This causes the variance entries to be either rewarded or penalized

due to the ESG performance of the respective title and - in general - weight shifting effects to be

of greater magnitude as compared to the direct approach. Due to the method being related to the

Black Litterman Model, the option to incorporate an investor’s views to reallocate portfolio weights

according to the expected financial performance remains functional. The empirical analysis confirms

the portfolios generated by the implementation of the suggested method to exhibit higher ESG scores

as compared to the benchmark. Highest portfolio ESG scores were attained by the mean referring

variance corrective approach, as it weighs ESG performance in the most pronounced way of the

approaches considered, followed by the median referring and the direct approach. Yet, this cannot

be formulated as a rule, since the outcome is contingent on the data. However, variance adjustments

stemming from mean and median reference are likely to be dispersed within a wider range as com-

pared to the direct approach for most real life implementations. Concerning financial performance,

only the direct method is able to outperform the market, while the two indirect approaches generate

negative relative performance measures for the period in consideration. The suggested method aims

at overcoming barriers for ESG incorporation by allowing for benchmark orientation, being closely

related to the two dimensional mean-variance criterion space, allowing for gradational incorporation
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of ESG measures, maintaining portfolio diversification while accounting for ESG criteria, providing

stability in weights over time and retaining the possibility to shape the portfolio according to the

investor’s views on financial performance.
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objective approach for sustainable investments, Expert Systems with Applications 39, 10904–10915.

Bilbao-Terol, Amelia, Mar Arenas-Parra, Verónica Cañal-Fernández, and Celia Bilbao-Terol, 2013,

Selection of socially responsible portfolios using hedonic prices, Journal of business ethics 115,

515–529.

Black, Fischer, and Robert Litterman, 1992, Global portfolio optimization, Financial Analysts

Journal 48, 28–43.

Bodie, Zvi, et al., 2009, Investments (Tata McGraw-Hill Education, New York).

Bollen, Nicolas PB, 2007, Mutual fund attributes and investor behavior, Journal of Financial and

Quantitative Analysis 42, 683–708.

Brandstetter, Lisa, and Othmar M Lehner, 2015, Opening the market for impact investments: The

need for adapted portfolio tools, Entrepreneurship Research Journal 5, 87–107.

Risk, Return, Responsibility



BIBLIOGRAPHY 83
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Appendix A
Explanatory Notes

A.1 Fama French Model

According to the three factor model of Fama and French (1996), the expected excess return of a

portfolio i can be to a large extend explained by the risk premia typically compensating for the

exposures to market risk, firm size and the book-to-market ratio. This relation can be expressed by

the following equation

E(Ri)−Rf = bi[E(Rm −Rf ) + siE[SMB] + hiE[HML]] (A.1)

with Rf as the risk-free rate, bi as factor loading for the market risk for portfolio i, Rm as market

return, si as factor loading for the difference in expected returns of small and big companies, hi as

factor loading for the difference in expected returns for growth stocks (high book-to-market ratio) vs.

value stocks (low book-to-market ratio). Thus, if the findings from e.g. Van Beurden and Gössling

(2008), Artiach et al. (2010)) for a ESG-market-size correlation and by Galema et al. (2008) for a

ESG-book-to-market correlation are assumed to hold true, portfolios with high levels of ESG scores

are likely to be less exposed to firm-size and growth risks, and thus are associated with a lower

expected return, than low ESG score portfolios.
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A.2 Portfolio Variance

The variance of a portfolio x is defined as follows (see e.g. Evstigneev et al. (2015)):

σ2
x = V ar(Rx) = E[(Rx − µx)2]

= E

( n∑
i=1

wiRi − E[Rx]

)2
 = E

( n∑
i=1

wi(Ri − E[Ri])

)2


= E

( n∑
i=1

wi(Ri − E[Ri])

) n∑
j=1

wj(Rj − E[Rj)]


= E

 n∑
i=1

n∑
j=1

wiwj(Ri − E[Ri])(Rj − E[Rj)


=

n∑
i=1

n∑
j=1

wiwjCov(Ri, Rj)

=

n∑
i=1

n∑
j=1

wiwjσi,j

(A.2)

where generally, the covariance of two random variables X snd Y is defined as

Cov(X,Y ) = E[X − E[X]][Y − E[Y ]] = E[XY ]− E[X]E[Y ].

In matrix notation the result of Expression A.2 can be written as w′Σw with w being a weight

vector (w1, . . . , wn) and Σ a matrix of the form:

Σ =

σ1,1 . . . σ1,n
... σi,j

...
σn,1 . . . σn,n

 .
Generally, Σ is assumed to be strictly positive definite, i.e. w′Σw > 0 for all w 6= 0.

A.3 Diversification and the Number of Assets

The effect of diversification, or diversifying away systematic risk, can be explained mathematically as

follows. Starting from the expression for portfolio variance derived in Appendix A.2, considering an

equally weighted portfolio of n assets, such that wi = wj = 1
n for all i, j and separating the variance

from the covariance terms, portfolio variance can be expressed as
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σ2
PF =

1

n

n∑
i=1

1

n
σ2
i +

n∑
i=1

n∑
j=1
j 6=i

1

n2
σi,j (A.3)

with n variance terms and n(n− 1) covariance terms. The average variance term is

σ̃2 =
1

n

n∑
i=1

σ2
i (A.4)

and the average covariance term is

σ̃i,j =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

σi,j . (A.5)

The portfolio variance in equation A.3 can therefore be expressed as

σ2
PF =

1

n
σ̃2 +

n− 1

n
σ̃i,j . (A.6)

The diversification effect can be observed when n tends to infinity, which causes the variance part

to converge towards zero and the covariance term to the average covariance (Bodie et al., 2009).

A.4 Efficient Frontier and Pareto Optimality

The feasible set S in Figure A.1 is the set all of feasible portfolios of assets in the market in an

Modern Portfolio Theory world. Minimizing portfolio variance for given levels of portfolio returns

lead to solutions on the margin of the feasible set S. Yet, only the set above the global minimum

variance portfolio (point m) is considered as the set of Pareto optimal solutions, which is equivalent

to the efficient frontier in this context. Portfolio p in Figure A.1 is not considered as efficient since

there is a portfolio with the same amount of risk but a higher return, for instance portfolio r. Thus,

if this situation is translated into a MOOP framework, for portfolio p there exists a solution that

is superior for at least one objective function, namely the maximization of portfolio return, i.e. p

cannot belong to the set of Pareto optima. Similarly portfolio q neither is optimal according to the

maximization of the expected return, nor the minimization of portfolio variance.
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µ

σ

S

Efficient Frontier

m

p

q

r

Figure A.1 – This illustration shows (a truncated set of) the efficient frontier (solid line), which is one of
the main features of the Modern Portfolio Theory. The unit of the ordinate is expected return (µ) the one of
the abscissa is standard deviation (σ). Point m is the global minimum variance portfolio, points p,q and r are
illustrative for the explanation of Pareto optimality in the text, S is the feasible set, or in this context also called
opportunity set. (Source: own figure based on Hens and Rieger (2010))
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A.5 Von Neumann and Morgenstern Axioms

Von Neumann and Morgenstern (1947) define the properties of an expected utility function to model

the preferences of a rational investor when faced with lottery like decisions, i.e. decisions under

uncertainty. A VNM investor maximizes expected utility consistent to the following four axioms (see

e.g. Hens and Rieger (2010)):

1. Completeness: With A and B being two alternative lotteries, either A � B, A ∼ B, or A ≺ B

holds. Where ”�” stands for ”is preferred to” and ”∼” symbolizes indifference.

2. Transitivity : With three lotteries A,B and C it must hold true that if A 4 B and B 4 C then

A 4 C. Where ”4” means ”less or equally preferred to”.

3. Independence: With A � B and λ ∈ (0 : 1], λA+ (1− λ)C � λB + (1− λ)C.

4. Continuity : For three lotteries A,B and C of the preference order A < B < C , ∃ p (prob-

ability), s.t. B ∼ pA+ (1− p)C.

A.6 Ideal and Nadir Vectors

The ideal vector in a minimization problem is the vector of m objective function values with the mth

component being defined (Deb, 2014) asarg min
x

fm(x)

subject to x ∈ S,
(A.7)

and the vector of solutions to Equation A.7 may be defined as z∗ = (z∗1 , z
∗
2 , . . . , z

∗
M ). Typically, the

ideal vector is a non-feasible solution, since the components of z∗ are not identical for most MOOP.

A further useful vector is the nadir vector znad, where its components are the maximum objective

function values znadm , given znadm is element of the set of Pareto efficient solutions. Often, ideal vectors

are rather easy to find, yet for nadir vectors approximation procedures are necessary. See Figure A.2

for a visual representation of the nadir and the ideal vector.
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z1
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z
∗

z
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1
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∗

1

z
nad

2

z
∗

2

Figure A.2 – This figure depicts the ideal vector z∗ as well as the nadir vector znad based on two assumed
objective functions and assumed the weak form of Pareto efficiency. (Source: own figure based on Lundström and
Svensson (2014); Miettinen (2012))

A.7 Risk Aversion and Concavity

The utility function in Figure A.3 is strictly concave, thus represents the preferences of a strictly

risk averse agent. The latter is confronted with the lottery E(x) = px0 + (1 − p)x1 with p being

a probability greater than zero. The expected utility is E(u(x)) = pu(x0) + (1 − p)u(x1) and as a

linear combination, it lies on the straight line connecting u(x0) and u(x1). A risk-neutral person

would feature a utility function being equivalent to this straight line and thus would be indifferent if

gambling for E(x) or receiving it for sure. A risk averse person, however, values getting E(x) with

certainty higher than gambling for it, which is why E(u(x)) < u(E(x)). The difference between E(x)

and the certainty equivalent CE is called risk premium (RP ) (see e.g. Hens and Rieger (2010)).
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u(x)

x

x0 x1E(x)CE

u(E(x))

E(u(x))

= u(CE)

u(x0)

u(x1)

RP

Figure A.3 – This illustration shows a strictly concave utility function in the space spanned by utility and some
monetary amount x. (Source: own figure, based on Hens and Rieger (2010))

A.8 Convexity

A basic concept in the context of MOOP is the notion of convexity (Lundström and Svensson, 2014).

Definition A.1. A set S in Rk is convex for all elements x, y ∈ S and α ∈ [0, 1] if

αx+ (1− α)y ∈ S. (A.8)

A function is convex on S if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ∈ S. (A.9)

4

If the inequality in A.9 is strict, the convexity is strict. If f is convex, −f is concave. If in the objective

function f(x) is a convex function and the feasible set S is a convex set, then the optimization problemarg min
x

f(x)

subject to x ∈ S
(A.10)

is said to be a convex optimization problem.
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A.9 Optimality

The general definition of optimality, not to confuse with Pareto optimality, is as follows (Lundström

and Svensson, 2014):

Definition A.2. Point x∗ ∈ S is said to be a local minimizer if there exists an ε, s.t.

f(x∗) ≤ f(x) ∀x ∈ S , s.t ‖ x− x∗ ‖< ε ∈ R+. (A.11)

It is a strict local minimizer if the inequality is strict.

A point x∗ ∈ S is said to be a global minimizer if

f(x∗) ≤ f(x) ∀x ∈ S. (A.12)

4

A.10 Problem Formulation Tri-Criterion Approach

(Hirschberger et al., 2013) start with the formulation of following problem:

arg min
w

√
z1(w) =

√
w′Σw

arg max
w

z2(w) = µ′w

arg max
w

z3(w) = c′w

subject to Alw = al

Amw ≤ am
w ≥ l
w ≤ ω

(A.13)
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where

zi ith objective function;

w vector of N portfolio weights in the case of N risky assets;

w′ vector w transposed;

Σ matrix of N ×N covariances;

µ vector of N expected returns, with E(Ri) = µi

c vector of N quantities linked to a third goal

Alw = al a set of k equality constraints containing 1′w = 1;

Amw ≤ am a set of q inequality constraints;

l a vector of N lower bounds.

ω a vector of N upper bounds.

The constraints in problem A.13 define the feasible set. If there are k equality constraints, then A

is a matrix of dimension K×N and a accordingly a vector of k entries. The problem is reformulated

to the multiparametric optimization problem, the optima of which are found by applying Karesh-

Kuhn-Tucker conditions. These are necessary first order conditions used in nonlinear programming

for solutions to the problem to be optimal. The paper provides an algorithm to solve the modified

problem A.13 in such a way, that the nondominated surface can be computed. 44

A.11 Market Equilibrium Considerations in CAPM

The market clearing condition requires that the asset weights in the tangential portfolio (demand

side) are identical to the weights in the market portfolio. The market portfolio is equal to the wealth

weighted average of I investors’ portfolio weights wi = 1
ρi

Σ−1(µ−Rf1) (see Equation 3.6 in Section

3.2.2). Formally, this can be expressed as follows (see e.g. Sharpe (1991)):
I∑
i=1

κi
K
wi ⇒

I∑
i=1

κi
K

1

ρi
Σ−1(µ−Rf1)

=

I∑
i=1

τ iΣ−1(µ−Rf1)

= τΣ−1(µ−Rf1)

(A.14)

with κi being investor i’s wealth and K the aggregated wealth of all investors in the economy, τi the

investor’s risk tolerance and τ the aggregate average risk tolerance. The following rearrangement

44 For details see Hirschberger et al. (2013).
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steps deduce the β relation from the equilibrium condition of a clearing market:

τΣ−1(µ−Rf1) = wM

⇔ (µ−Rf1) =
1

τ
Σ wM

⇒ w′M (µ−Rf1) =
1

τ
w′MΣ wM

⇔ (µM −Rf ) =
1

τ
σ2
M

⇔ 1

τ
=

(µM −Rf )

σ2
M

(A.15)

where wM is the weight vector of the market portfolio and σ2
M is the variance of the market portfolio

and 1
τ is the aggregate risk aversion coefficient (as the reciprocal value to risk tolerance) of the market.

Replacing the expression for 1
τ in the second line of derivation A.15, leads to the closed form solution

of equilibrium expected returns:

(µ−Rf1) =
(µM −Rf )

σ2
M

ΣwM (A.16)

where ΣwM is a vector of n covariances of the single assets with the market portfolio in the n asset

case. Therefore, Equation A.16 can by the definition of β be reformulated to

(µ−Rf1) = β(µM −Rf ) (A.17)

with β being a vector with its kth element βk = cov(Rk,RM )
σ2
M

. That is, the risk premium of a single

asset is proportional to its contribution to the total variance of the aggregate portfolio.

A.12 Covariance Shrinking

Instead of applying simple sample covariance matrices, in this thesis the covariance shrinking method

proposed in Ledoit and Wolf (2003) is applied. Generally, covariance shrinkage is the transformation

of the sample covariance matrix that pulls the most extreme values towards more central values.

Ledoit and Wolf (2003) achieve shrinkage by means of a linear combination of the sample covariance

matrix S and a structured estimator denoted by F , that is by δF + (1 − δ)S. The specific form

of the shrinkage target F proposed in the paper is based on the average sample correlation, i.e.

it is assumed that the pairwise correlations are identical. The shrinkage intensity δ is computed

on the basis of the minimization of an expected quadratic loss function, minimizing the expected
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distance between the true and the estimated covariance matrices, based on the Frobenius norm. For

a symmetric N ×N matrix with entries (zij), i, j = 1, . . . , N the Frobenius norm is defined as

‖Z‖2 =

N∑
i=1

N∑
j=1

z2
ij (A.18)

and the quadratic loss function to be minimized is accordingly

L(δ) = ‖δF + (1− δ)S − Σ‖2. (A.19)

For further details and the source for the Matlab code applied for the present thesis in order to

shrink covariance matrices, see Ledoit and Wolf (2003).

A.13 Performance Measure Calculations

Subsequently the calculations of the measures as presented in Table 5.3 from Section 5.2 are discussed.

The ESG performance for a single portfolio of N titles and portfolio weights wi,t for the period t is

ESGPF,t =
N∑
i=1

wi,t−1ESGi,t (A.20)

and its arithmetic mean over the period t = 1, . . . , T accordingly

ESGPF =
1

T

T∑
t=1

ESGPF,t. (A.21)

The ex post portfolio excess returns over the riskfree rate, rPF,t of N assets for period t are calculated

as follows:

rPF,t =

N∑
i=1

wi,t−1 ri,t. (A.22)

The generic annualization of the monthly excess returns, rm, and return related measures is computed

as :

ry = (1 + rm)12 − 1. (A.23)

The respective standard deviations σm

σy = (σm)×
√

(12). (A.24)

The arithmetic mean of realized excess returns for the period t = 1, . . . , T is calculated as

r̄PF =
1

T

T∑
t=1

rPF,t (A.25)
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and the corresponding standard deviation as

σPF =

√∑T
t=1(rPF,t − r̄PF )2

T − 1
. (A.26)

The annualized Sharpe Ratio is accordingly

SR =
r̄PF,y
σPF,y

. (A.27)

Similarly, the arithmetic mean of the excess return for the portfolio return over the market return is

calculated as

rDPF =
1

T

∑
t=1

T rPF,t − rM,t. (A.28)

and the tracking error TE accordingly

TEPF =

√∑T
t=1(rPF,t − rM,t)2

T − 1
. (A.29)

Expressions A.28 and A.31 are the basis to calculate the IR:

IRPF =
rDPF,y
TEPF,y

. (A.30)

Finally, Jensen’s alpha is calculated as follows:

αPF = r̄PF − βPF r̄M (A.31)

where βPF =
σPF,M
σ2
M

, thus the fraction of the covariance of portfolio excess returns with the market

portfolio excess returns and the market portfolio variance.
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Appendix B
Proofs and Derivations

B.1 Efficiency of Weighted Sum Solutions

The solution to the problem arg min
x

F (x) =
∑n

i=1 λifi(x)

subject to x ∈ S
(B.1)

is weakly Pareto efficient if λi ≥ 0 for all i ∈ (1, . . . , n). This is proven by contradiction: Let x∗ be a

solution to Problem B.1. To show that x∗ is a weakly efficient solution to the MOOP A.10 suppose

that there exists some x̃ ∈ S, such that fi(x̃) < fi(x
∗), for all i ∈ (1, . . . , n), i.e. suppose that x∗ is

not weakly efficient. This implies that
∑n

i=1 λifi(x̃) <
∑n

i=1 λifi(x̃
∗) due to the non-negativity of

the weights. This is a contradiction to x∗ being a solution to B.1, thus x∗ is weakly efficient.

For the proof of strict efficiency, the weights are required to be λi > 0 for all i ∈ (1, . . . , n). Similar

to the proof above, it is assumed that there exists some x̃ ∈ S, such that fi(x̃) ≤ fi(x∗), for all

i ∈ (1, . . . , n), with at least one strict inequality. This again implies that∑n
i=1 λifi(x̃) <

∑n
i=1 λifi(x̃

∗) due to the weights being strictly positive. This is a contradiction and

x∗ is strictly efficient.
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B.2 Efficiency of ε-Constraint Solutions

Let the solution x∗ to the problem
arg min

x
fj(x)

subject to fi(x) ≤ εi, i = (1, . . . , k),∀i 6= j

x ∈ S.

(B.2)

be an optimal solution, then this solution is weakly efficient. For a proof assume x∗ is not weakly effi-

cient, then there is some x ∈ S with fi(x) < fi(x
∗) for all i = (1, . . . , k), particularly fj(x) < fj(x

∗).

Also, the solution is feasible since fi(x) < fi(x
∗ ≤ εi) for i 6= j. This contradicts x∗ being an optimal

solution to B.2.

To prove that x∗ is also a strictly efficient solution, assume that x∗ is optimal and unique.

Assume further that there is some x ∈ S with fi(x) ≤ fi(x
∗) ≤ εi for all i 6= j. If additionally, it is

assumed that fj(x) ≤ fj(x
∗), it must hold that fj(x) = fj(x

∗), because x∗ is an optimal solution

to Problem B.2. The uniqueness of x∗ thus implies x = x∗ and the strict efficiency of x∗.

For x∗ to be strictly efficient, in general, it is required that εi = fi(x
∗) for i = (1, . . . , k). If this

is not the case, then there exists some feasible solution x with fj(x) < εj for some j and fk(x) ≤ εk
for all k 6= j. This contradicts the optimality assumption of x∗.

B.3 Derivation of the CAPM formula

There are different ways of deriving the core expression of the CAPM relating the expected return

of an asset j to its co-movement with the market portfolio. One straight forward approach is given

in Bodie et al. (2009). Due to equilibrium considerations it must hold that the risk-to-reward ratio

of the market portfolio must be equal to one of asset j. If the converse was true, this would mean

that the market portfolio is not efficient and that it would have to be changed by shifting weights

towards the superior asset, such that consequently it must hold that both risk-to-reward ratios are

equal. Therefore, note that the covariance of asset j with the market portfolio can be defined as

follows:

Cov(RM , Rj) = Cov(Rj ,

n∑
k=1

wkRk) =

n∑
k=1

wkCov(Rk, Rj) (B.3)
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while asset j contributes to the market portfolio risk by wjCov(Rj , Rm), similarly the reward con-

tribution to the market portfolio can be expressed as wj(µj−Rf ). Setting equal both risk-to-reward

ratios (the weights wj cancel out) yields:

µj −Rf
Cov(RM , Rj)

=
µM −Rf
σ2
M

(B.4)

and solving for µj −Rf and replacing
Cov(RM ,Rj)

σ2
M

by β leads to the CAPM centerpiece

µj −Rf = βj(µM −Rf ). (B.5)

B.4 Derivation of the BLM Master Formula

The following derivation is based on the work of Satchell and Scowcroft (2000), Christodoulakis

(2002) and comments as well as explanations from Zuber (2012). The following paragraphs derive

that the posterior distribution is defined by

µp = (τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1Π + P ′Ω−1Q]

ΣP = [(τΣ)−1 + P ′Ω−1P ]−1.
(B.6)

The BLM posterior distribution according to Bayes’ theorem is postulated as

pdf(µ | Π) =
pdf(Π | µ)× pdf(µ)

pdf(Π)
. (B.7)

In a multivariate setting as it is encountered in the case of a vector of expected returns, generally

a density function of a (N × 1) vector x = (x1, x2, . . . , xN ) is denoted as follows:

f(x | m,V ) = (2πc)
−n/2|V |− 1

2 exp

[
−1

2
(x−m)′V −1(x−m)

]
, (B.8)

with πc as the mathematical constant, exp as the exponential function, m being a (N × 1) vector

m = (m1,m2, . . . ,mN ) of means, V being the (N × N) covariance matrix, |V | its determinant

and V −1 its inverse. The normalizing constant pdf(Π) from Expression B.7 will disappear into the

constant of integration with respect to µ, thus the focus lies on the numerator. Having defined

in Section 4.1 that µ ∼ N(Π, τΣ) and Pµ ∼ (Q,Ω), hence the density function of the conditional

probability is

pdf(Π | µ) = (2πc)
−n/2|τΣ|− 1

2 exp

[
−1

2
(Π− µ)′(τΣ)−1(Π− µ)

]
(B.9)

Risk, Return, Responsibility



B.4. DERIVATION OF THE BLM MASTER FORMULA 112

and the density function of the prior is

pdf(µ) = (2πc)
−n/2|Ω|− 1

2 exp

[
−1

2
(Pµ−Q)′Ω−1(Pµ−Q)

]
. (B.10)

Since in both Expressions B.9 and B.10, the terms of the form (2πc)
−n/2|V |− 1

2 are constant, there

is no influence on the proportion to the posterior distribution, thus the focus on the nominator of

Expression B.7 leaves us with

exp

[
−1

2
(Π− µ)′(τΣ)−1(Π− µ)− 1

2
(Pµ−Q)′Ω−1(Pµ−Q)

]
. (B.11)

and expanding Expression B.11 further leads to

exp

[
−1

2

(
Π′(τΣ)−1Π−Π′(τΣ)−1µ− µ′(τΣ)−1Π + µ′(τΣ)−1µ

+(Pµ)′Ω−1Pµ− (Pµ)′Ω−1Q−Q′Ω−1Pµ+QΩ−1PµQ
) ] (B.12)

Since (τΣ)−1 and Ω−1 are symmetric, B.12 can be simplified to

exp

[
−1

2

(
µ′((τΣ)−1 + P ′Ω−1P )µ− 2((τΣ)−1Π + PΩ−1Q)′µ+ Π′(τΣ)−1Π +Q′Ω−1Q

)]
. (B.13)

Let us define

Z ≡ ((τΣ)−1 + P ′Ω−1P )

C ≡ (τΣ)−1Π + PΩ−1Q

A ≡ Π′(τΣ)−1Π +Q′Ω−1Q

(B.14)

where Z is symmetric and thus Z ′ = Z. Expression B.13 is reformulated to

exp

[
−1

2
(µ′Zµ− 2C ′µ+A)

]
. (B.15)

Multiplication of µ′Zµ and C ′µ of Expression B.13 with Z−1Z = I, where I is the (N ×N) identity

matrix leads to

exp

[
−1

2
(µ′Z ′Z−1Zµ− 2C ′Z−1Zµ+A)

]
. (B.16)

Based on the symmetry of Z and the fact that

(Zµ− C)′Z−1(Zµ− C) = (Zµ)′Z−1Zµ− (Zµ)′Z−1C − C ′Z−1Zµ+ C ′Z−1C

= (Zµ)′µ− 2C ′Z−1Zµ+ C ′Z−1C

(B.17)

Expression B.16 can be rearranged into

exp

[
−1

2

(
(Zµ− C)′Z−1(Zµ− C)− C ′Z−1C +A

)]
(B.18)
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and since it holds that (Zµ− C) = (µ− Z−1C)Z, B.18 is reformulated as follows

exp

[
−1

2

(
(µ− Z−1C)′Z(µ− Z−1C)− C ′Z−1C +A

)]
. (B.19)

When integrating with respect to µ, A and C ′Z−1C disappear as constant, thus the proportionality

of the posterior density function can be expressed as

pdf(µ | Π) ∝ exp
[
−1

2

(
(µ− Z−1C)′Z(µ− Z−1C)

)]
(B.20)

where ∝ indicates proportionality. Comparing B.8 with B.20, it is straight forward to identify the

posterior mean

µp = [Z−1C] = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1Π + P ′Ω−1Q] (B.21)

as well as its variance

ΣP = [(τΣ)−1 + P ′Ω−1P ]−1 (B.22)

being the components of the BLM master formula.
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Appendix C
Figures

z1

z2

weakly

Pareto

efficient set

strictly

Pareto

efficient

set

A

B

C

Figure C.1 – This illustration shows the weakly and the strictly Pareto efficient set in the image of two objective
functions z1 and z2 in a minimization setup. For the set on the bold lines between points A, B and C (including
A,B,C) it holds true that there does not exist any x that lowers the values for all objective functions at the same
time, which by Definition 3.1 makes the set weakly Pareto efficient. However, focusing on point A for illustration
purposes, points south of A (except for point B) exhibit lesser z1 values while z2 values remain the same, thus
by definition A it is not considered strictly efficient. This reasoning holds true for the set between A and B
(including A, excluding B). For the set between B and C (including both), such z (and accordingly x) do not
exist, making it the strictly Pareto efficient set. (Source: own figure based on Lundström and Svensson (2014);
Miettinen (2012))
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µ

σ

CAL

RP

Rf

E(RRP )

σRP

C

A

Figure C.2 – This illustration shows the CAL, which is set of all combinations of the riskfree asset Rf and the
risky portfolio RP (or the tangential portfolio). Generic investor C being a conservative investor according to her
risk aversion parameter lends, the more aggressive investor A borrows money at the rate of Rf to buy more of the
RP . The dotted lines passing through points A and C represent respective indifference curves of the investors.
The risky portfolio RP with an expected return E(RRP ) and standard deviation σRP is the tangential point of

the CAL being the tangent to the Efficient Frontier (bold line). The slope of the CAL is equal to
E(RRP )−Rf

σRP
,

which is the maximal attainable Sharpe Ratio, defined as
E(Ri)−Rf

σi
in this setup. (Source: own figure based on

Bodie et al. (2009))

f1

f2

f1

f2

λ2

λ1

ǫ
a

1 ǫ
b

1
ǫ
c

1

C
B

A

Y Y

Figure C.3 – This illustration shows the weighted sum approach on the left, the ε-constraint on the right
schematically in the case of two objective functions. The feasible set in the objective space is the area labeled with
Y , the Pareto efficient set is the bold line. On the left, the choice of weights determines the slope of the curve
being tangential to the feasible set in the objective space Y , with the tangential point A as one efficient solution
to the MOOP. On the right hand side different levels of ε1 values illustrate the mechanics of the ε-constraint
method. In this example f2 is the function to optimize for, while f1 is treated as constraint, (alternatively, this
could equivalently have been labeled in the Z space). If the starting value is εa1 no solution is found, since the
feasible set lies on the right hand side of the constraint. For the starting value being εb1 and the feasible set being
on the left side of the constraint, point B is found as an efficient solution. Choosing εc1 as starting value, point C
on the efficient set is found. (Source: own figure based on Deb (2014))
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µ

σ

CML

MPF

Rf

EF

µM

σM

µ

β

µM

Rf

βM = 1:0

SML

µj

βj

Figure C.4 – This illustration shows the Capital Market Line (CML) on the left hand side. It is a projection of
the market equilibrium when all investors act based on homogeneous beliefs and planning horizons in accordance
with the MPT. The Capital Allocation Line (CAL) from the single invstor’s optimization problem becomes the
CML and the tangential portfolio becomes the Market Portfolio (MPF). On the right hand side the Security
Market Line (SML) depicts the relation of the risk measure β and the expected return µ. Its slope is µM − Rf
since β as a measure for exposure to movements of the market portfolio is equal to one for the market portfolio.
Asset j for illustrative reasons bears a β greater than one which induces a higher expected return as compared to
the MPF. (Source: own figure based on Bodie et al. (2009))
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Figure C.5 – This figure shows the distribution of the ESG data by means of boxplots, beginning on the
top left with the equally weighted ESG score for each of the titles, followed by the single category scores.
The boxplots are based on yearly data from 2002 to 2014. (Source: own figure)

.
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Figure C.6 – This figure shows the histograms of monthly returns from January 2002 to December 2014
for the single members of the SMI(-). (Source: own figure)

.
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Appendix D
Tables

Eurosif GSIA PRI EFAMA

Exclusions ESG Negative screening ESG Negative / Exclu-

sionary screening

Negative Screening or

Exclusion

Norms-based screening Norms-based screening Norms-based screening Norms-based approach

Best-in Class selection ESG Positive screening

and Best-in-Class

ESG Postive screening

and Best-in-Class

Best-in-Class policy

Sustainablility themed Sustainability themed ESG themed Investments Thematic Investment

ESG Integration ESG Integration Integration of ESG issues -

Engagement and voting Corporate Engagement

and shareholder action

Engagement Engagement

Impact Investing Impact / Community in-

vesting

- -

Table D.1 – ESG Strategies in different networks

Source: Eurosif (2014)
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Company Weight(%)

NESTLE 21.1812
NOVARTIS 22.5019
ROCHE 17.0730
UBS 5.7197
ABB 4.4059
SYNGENTA 2.6780
CREDIT SUISSE 3.6292
SWISS RE 2.7920
RICHEMONT 4.1736
ZURICH 4.1982
LAFARGE HOLCIM 2.1013
SWISSCOM 2.4370
GIVAUDAN 1.4906
SGS 1.4403
SWISS LIFE 0.6828
GEBERIT 1.1517
ADECCO 1.1101
SWATCH 1.2334

Table D.2 – This table shows the members of the SMI(-) that are used int the empirical analysis part.
The weights are indicative as of end of December 2014, adjusted for the two excluded assets due to data
completeness considerations.
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ESG Category Description

Environmental The environmental pillar measures a company’s impact on living

and non-living natural systems, including the air, land and water,

as well as complete ecosystems. It reflects how well a company

uses best management practices to avoid environmental risks and

capitalize on environmental opportunities in order to generate long

term shareholder value.

Social The social pillar measures a company’s capacity to generate trust

and loyalty with its workforce, customers and society, through its

use of best management practices. It is a reflection of the com-

pany’s reputation and the health of its license to operate, which

are key factors in determining its ability to generate long term

shareholder value.

Corporate Governance The corporate governance pillar measures a company’s systems

and processes, which ensure that its board members and executives

act in the best interests of its long term shareholders. It reflects a

company’s capacity, through its use of best management practices,

to direct and control its rights and responsibilities through the

creation of incentives, as well as checks and balances in order to

generate long term shareholder value.

Economic The economic pillar measures a company’s capacity to generate

sustainable growth and a high return on investment through the

efficient use of all its resources. It is reflection of a company’s

overall financial health and its ability to generate long term share-

holder value through its use of best management practices.

Table D.3 – This table shows the exact specification of the Asset4 categories as given by Thomson
Reuters.
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κ = 1 κ = 3 κ = 5

M D I1 I2 D I1 I2 D I1 I2

ESG 0.8973 0.9020 0.9126 0.9100 0.9085 0.9232 0.9193 0.9131 0.9320 0.9250
Ret 0.0111 0.0131 0.0063 0.0094 0.0158 0.0004 0.0077 0.0176 -0.0062 0.0059
SD 0.1291 0.1285 0.1283 0.1282 0.1281 0.1277 0.1270 0.1280 0.1408 0.1264
SR 0.0858 0.1016 0.0493 0.0730 0.1231 0.0033 0.0602 0.1377 -0.0441 0.0467
TE 0.0000 0.0042 0.0076 0.0049 0.0102 0.0219 0.0117 0.0148 0.0553 0.0188
IR 0.0000 0.4659 -0.6181 -0.3482 0.4548 -0.4821 -0.2890 0.4394 -0.3096 -0.2731
α 0.0000 0.0020 -0.0046 -0.0016 0.0048 -0.0103 -0.0032 0.0066 -0.0172 -0.0048

ESG 0.8973 0.9026 0.9096 0.9086 0.9082 0.9183 0.9163 0.9121 0.9253 0.9218
Ret 0.0731 0.0745 0.0696 0.0716 0.0759 0.0646 0.0694 0.0765 0.0631 0.0675
SD 0.1003 0.0991 0.0997 0.0993 0.0980 0.0999 0.0985 0.0975 0.0994 0.0982
SR 0.7287 0.7512 0.6982 0.7206 0.7739 0.6473 0.7053 0.7848 0.6348 0.6877
TE – 0.0036 0.0049 0.0049 0.0085 0.0129 0.0117 0.0121 0.0223 0.0188
IR – 0.3676 -0.6604 -0.3535 0.3061 -0.6120 -0.3627 0.2699 -0.4195 -0.3557
α – 0.0022 -0.0028 -0.0007 0.0045 -0.0070 -0.0018 0.0057 -0.0070 -0.0030

Table D.4 – The upper half of this table corresponds to Table 5.3 and contains some key performance
measures for the period of 2007 to 2014. The lower half contains key measures for the subsample period
excluding the global financial crises, thus 2009-2014, for comparison reasons. M stands for market, D for
the direct and I for the indirect AVM approaches, where I1 refers to the mean and I2 to the median. The
portfolios where calculated due to different degrees of intensity of ESG incorporation, κ. The performance
measures beginning from the first row: ESG average score, average excess return over the riskfree rate,
standard deviation of the returns, Sharpe Ratio, Tracking Error, Information Ratio, Jensen’s alpha.
Computational details for the different measures are given in Appendix A.13.
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